IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 2, September 2023

Preparation and Evaluation of Oral Extended Release Tablet of Acelophenac for Better Efficacy

Shailendra Sriwastava¹ and Dr. Sangamesh B. Puranik²

Research Scholar, Department of Pharmacy¹ Professor, Department of Pharmacy² OPJS University, Churu, Rajasthan, India

Abstract: There is need of extended release matrix tablet because of the reason that there is some short high life time and maximum therapeutic efficacy within the body so here we planed to prepare the acelophenac as an active ingradiant with polymer and some necessary ingradients for the preparation of garnual and then after tablet preparation we find that there is good behaviour shown by the formulation and the best result is evaluated further for the study

Keywords: Extended release matrix

I. INTRODUCTION

Oral medication conveyance is the most broadly appropriate route among every single other route, for example, nasal, ophthalmic, rectal, transdermal and parenteral routes. It has been investigated for systemic transport of drug through different pharmaceutical products of a dissimilar dosage form. The oral course is viewed as most regular, uncomplicated, advantageous and safe because of its simplicity of administration, and patient consistence. Dominant part of the pharmaceutical items intended for oral conveyance are prompt discharge or conventional release system for fast medicine captivation [1].Controlled drug delivery system has been established which are able to controlling the rate of drug delivery, supporting the extent of therapeutic activity or potentially focusing on the delivery of medication to a tissue [2]. Controlled drug delivery or altered drug delivery systems are suitably partitioned into four classes: delayed release, sustained release, site-specific targeting, receptor targeting. According to the biopharmaceutical classification system (BCS) Aceclofenac belongs to highly permeable (class II) but it is a weak acid (pKa = 4.7) practically insoluble in water and acidic environment. With a bioavailability of nearly 100% and an elimination half-life of 24 h oral absorption is uniform, rapid and complete [3]. Aceclofenac is selected for the development of once daily sustained release matrix tablets because it is reported to have a short biological half-life (3.4 ± 0.7 h) requiring it to be administered in 100mg twice daily [4]. For better control of pain, enhance clinical efficacy and patient compliance, once daily sustained release formulations of Aceclofenac is suggested by pharmacokinetics and dosage schedule supports.

Materials

Aceclofenac, HPMCK15M, Guar Gum, Lactose, PVP K30, IPA, Talc, Magnesium stearate, etc. all chemicals are procured from sigma Aldrich and they are of synthesis grade.

II. METHODOLOGY

Different parameters involved in developing sustained release matrix tablet are described in this section.

Preparation method of tablet

The constant amount of drug was weighed and passed through sieve no.40. The equivalent amounts of polymers (HPMC/ guar gum), lactose was weighed, screened through screen sieve no.40. The screened mass was transferred into a clean and dry mortar and mixed gently for 5 min and alcoholic solution (IPA) of PVP K 30 (5% w/v) was gradually added to the powder mixture and blended to form a wet mass. The wet mass was passed through sieve no. 10 to form granules and resulting granules were placed on a tray for drying into the oven at 50 °C for 10 min. The dried granules were passed

Copyright to IJARSCT www.ijarsct.co.in

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 2, September 2023

through sieve no. 18. corresponding amount of magnesium stearate and talc were weighed and mixed with granules for 3 min. Using a single station hand operated tablet compression machine granule were compressed to form tablets [5].

Ingredients (mg)Formulation code										
		F1	F2 F3	F4	F5F6	F7	F8	F9		
Aceclof	enac	200	200	200	200	200	200	200	200	200
HPMCK15M		50	100	150	200	-	-	-	-	100
Guar Gu	ım	-	-	-	-	50	100	150	200	100
Lactose	200	150	100	50	200	150	100	50	50	
PVP K3	0	25	25	25	25	25	25	25	25	25
IPA	q. s.	q.s.	q.s.	q.s.	q.s.	q.s.	q.s.	q.s.	q.s.	
Talc	20	20	20	20	20	20	20	20	20	
Magnes	ium	5	5	5	5	5	5	5	5	5

Table 1 Composition of the sustained release matrix tablets containing Aceclofenac. Ingredients (mg)Formulation code

Micromeretic characterization of granules Determination of bulk density

Mass (M) of the powder divided by the bulk volume (Vb) gives Bulk density which expressed as g/cm3 and depends on particle size distribution, particle shape and particles adhere. Apparent bulk density (pb) was determined by pouring the blend into a 10 ml graduated cylinder [6]. The bulk density was calculated using following formula:

Determination of tapped density

Tapped density was measured by a measuring cylinder containing a known mass (M) of powder blend and was tapped 100 times using density apparatus. The minimum volume (Vt) occupied by the powder in the cylinder was measured. The tapped density (pt) was calculated using the formula [7]:

Determination of angle of repose

Angle of repose was determined using funnel method, powder blend was poured through a funnel which raised vertically a maximum cone height (h) [8]. Radius of the heap (r) was measured and angle of repose (θ) was calculated using the formula:

The values of angle of repose indicating flow properties have been recommended as <25 indicating excellent flow, 25-30 indicating good flow, 30-40 indicating passable, and value >40 indicated very poor flow of the powered material.

Determination of compressibility index

Compressibility index is the simplest way for measurement of flow property of powder to determine its compressibility. It is an indication of the ease with which a material can persuaded to flow which is calculated using following equation: Where ρt is the tapped density, and ρb is the bulk density.

The values of compressibility index indicating flow properties have been recommended as <12 indicating excellent flow, 12 - 16 indicating good flow, 18 - 21 indicating fair to passable, 25 - 35 indicating poor, 33 - 38 indicating very poor, and value > 40 indicated extremely poor flow of the powered material.

Evaluation of tablets

Examination of tablet appearance

Arbitrarily twenty tablets of each preparation were taken and examined for physical or surface roughness in the tablets [9].

Determination of tablet thickness

Tablet thickness is an important parameter in reproducing appearance and also in counting by suing filling equipment, many tablet filling/ packaging equipment utilizes the uniform thickness of the tablets as a counting mechanism [10]. In present study, 10 tablets were randomly selected and their thickness was recorded using micrometer (Mityato, Japan).

Determination of uniformity of weight

The weight variation method of determining the drug content uniformity would be satisfactory, U.S.P procedure for uniformity of weight was followed. The allowed weight variation limits are 10%, 7.5% and 5% for tablets having weight 130 mg or less, 130-324 mg and > 324 mg, respectively. 20 tablets were taken & weighed individually using a digital weighing balance and average weight of one tablet was determined from the collective weight [11].

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 2, September 2023

Determination of tablet hardness

The resistance of tablet to chipping, abrasion or breakage under condition of storage, transportation, and handling before use depends on its hardness or strength [12]. Hardness of tablet is the force applied across the diameter of the tablet in order to break it, 10 tablets from each batch were randomly selected and hardness was determined using Monsanto tablet hardness tester.

Determination of tablet friability

Friability of the prepared tablets was determined using Roche friabilator. Tablets were subjected to the combined effect of abrasions and shock in a plastic chamber revolving at 25 rpm and dropping the tablets at a height of 6 inch in each revolution. 20 tablets were weighed earlier & placed in the friabilator subjected to 100 revolutions [80]. Tablets were dedusted using a soft muslin cloth and re-weighed, percentage friability was determined using following formula [13]: where, Wo is weight of the tablets before the test, W is the weight of the tablets after test.

Determination of drug content

From each batch six tablets were weighed and finely powdered using clean and dry mortar and pestle. Powder equivalent to the weight of one tablet was transferred to volumetric flask of 100 ml and shake with 60 ml of phosphate buffer (pH 6.8) for 10 min. The volume of resulting solution was made up to 100 ml and kept for 24 h. After 24 h, the content was filtered, an aliquot of 1.0 ml from the filtrate was diluted to 100 ml with phosphate buffer pH 6.8 in volumetric flask and then further 1 ml from this solution were diluted up to 10 ml with phosphate buffer (pH 6.8) [14]. The sample was analyzed by a UV spectrophotometer (LabIndia 3000+, Mumbai, India) at 273.5 nm.

III. RESULT AND DISCUSSIONS

Micromeritic properties

The flow property of prepared granules was estimated based on different micromeritic properties. The bulk density and tapped density was determined using USP bulk density apparatus and the results were represented in Table 4.6.

Formulation	Bulkdensity	Tapped	Compressibility	Angleofrepose
code	(g/cm ³)	density(g/cm ³)	Index(%)	(□)
F1	0.438±0.002	0.503±0.006	12.4±0.346	30.60±0.566
F2	0.429±0.007	0.479±0.009	12.65±0.618	30.00±0.173
F3	0.477±0.019	0.560±0.023	14.76±1.721	28.03±0.208
F4	0.491±0.010	0.551±0.013	10.93±0.150	28.30±0.346
F5	0.416±0.007	0.471±0.009	11.74±0.248	27.24±0.295
F6	0.412±0.027	0.479±0.018	14.0±1.212	26.78±0.600
F7	0.477±0.010	0.556±0.010	14.20±0.266	27.77±0.546
F8	0.466±0.003	0.541±0.001	14.05±0.531	27.29±0.272
F9	0.478±0.003	0.561±0.001	14.76±0.462	27.34±0.140

Evaluation of tablet

The tablets were evaluated for weight variation, thickness, hardness, friability drug content and *in vitro* drug release profiles. Weight variation data indicates no significant difference in individual tablet weight from the average weight (500.333 ± 0.577 to 502.33 ± 0.577). Tablet hardness was observed within the range of 3.26 ± 0.115 to 3.60 ± 0.200 kg/cm² with uniform thickness ranges from 3.23 ± 0.004 to 3.28 ± 0.008 . Friability of all the formulations was below 1%, which indicates good mechanical strength of the tablets.

-					
Formulation	Weight(mg)	Thickness(m	Hardness(kg/	Friability	Drug Content
code		m)	cm ²)	(%)	(%)
F1	501.33±0.577	3.23±0.035	3.53±0.115	0.31	97.89
F2	501.67±0.535	3.26±0.010	3.60±0.200	0.48	100.59
F3	500.67±1.528	3.25±0.005	3.46±0.115	0.64	96.32
F4	502.33±0.577	3.27±0.006	3.40±0.200	0.71	97.99
F5	500.68±0.438	3.28±0.008	3.26±0.115	0.33	96.32

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 2, September 2023

F6	501.33±1.155	3.25±0.012	3.33±0.120	0.47	100.11
F7	501.23±1.535	3.24±0.007	3.33±0.115	0.63	99.15
F8	502.33±0.577	3.27 ± 0.007	3.40±0.200	0.68	99.14
F9	500.33±0.577	3.23 ± 0.004	3.50±0.115	0.65	100.11

IV. DISCUSSION

In this work an attempt was made to formulate and evaluate sustained release matrix tablets of Aceclofenac to maintain the plasma drug concentration constant for the whole day. It also helps in decreasing the dosing frequency by which the patient compliance increases. Aceclofenachas a very short half $life(t_{1/2} \ \ 4 \ h)$, so in case of conventional tablets Aceclofenac dosing frequency is more. Plasma drug concentration can't be maintained at the therapeutic levels for a longer period of time of drugs with short half -life, to decrease the dosing frequency and increase the patient compliance sustained release matrix tablets were formulated.

REFERENCES

- [1]. Yum, S. I., Schoenhard, G., Tipton, A. J., Gibson, J. W., Middleton, J. C., Fu, R., &Zamloot, M. S. (2016). U.S. Patent No. 9,517,271. Washington, DC: U.S. Patent and Trademark Office.
- [2]. Omprakash, B., Ajay, S., Santosh, G., & Amin, P. (2012). Formulation development of venlafaxine hydrochloride extended release tablet and invitro characterizations. *International Journal of PharmTech Research*, 4(4), 1777-1784.
- [3]. Khan, G. M. (2001). Controlled release oral dosage forms: Some recent advances in matrix type drug delivery systems. *The sciences*, *1*(5), 350-354.
- [4]. Higuchi, T. (1963). Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. *Journal of pharmaceutical sciences*, 52(12), 1145-1149.
- [5]. Davis, S. S., Hardy, J. G., &Fara, J. W. (1986). Transit of pharmaceutical dosage forms through the small intestine. *Gut*, 27(8), 886-892.
- [6]. Siepmann, J., & Peppas, N. A. (2001). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Advanced drug delivery reviews, 48(2-3), 139-157.
- [7]. Hirani, J. J., Rathod, D. A., &Vadalia, K. R. (2009). Orally disintegrating tablets: a review. *Tropical journal of pharmaceutical research*, 8(2).
- [8]. Barloy, L., Lallier, J. P., Battioni, P., Mansuy, D., Piffard, Y., Tournoux, M., ...& Jones, W. (1993). Manganese Porphyrins Adsorbed or Intercatalated in Different Mineral Matrices: Preparation and Compared Properties as Catalysts for Alkene and Alkane Oxidation. *ChemInform*, 24(11).
- [9]. Liu, Y., Layrolle, P., de Bruijn, J., van Blitterswijk, C., & de Groot, K. (2001). Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy. *Journal of Biomedical Materials Research Part A*, *57*(3), 327-335.
- [10]. Kaneko, K., & Ishii, C. (1992). Superhigh surface area determination of microporous solids. *Colloids and surfaces*, 67, 203-212.
- [11]. Fiedler, U., &Růžička, J. (1973). Selectrode—the universal ion-selective electrode: Part VII. A valinomycinbased potassium electrode with nonporous polymer membrane and solid-state inner reference system. *Analyticachimicaacta*, 67(1), 179-193.
- [12]. Siepmann, J., &Peppas, N. A. (2000). Hydrophilic matrices for controlled drug delivery: an improved mathematical model to predict the resulting drug release kinetics (the "sequential layer" model). *Pharmaceutical Research*, 17(10), 1290-1298.
- [13]. Ju, R. T., Nixon, P. R., Patel, M. V., & Tong, D. M. (1995). Drug release from hydrophilic matrices. 2. A mathematical model based on the polymer disentanglement concentration and the diffusion layer. *Journal of pharmaceutical sciences*, 84(12), 1464-1477.
- [14]. Conti, S., Maggi, L., Segale, L., Machiste, E. O., Conte, U., Grenier, P., &Vergnault, G. (2007). Matrices containing NaCMC and HPMC: 2. Swelling and release mechanism study. *International Journal of pharmaceutics*, 333(1-2), 143-151.

Copyright to IJARSCT www.ijarsct.co.in

