
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, September 2023

Copyright to IJARSCT 87

www.ijarsct.co.in

Impact Factor: 7.301

A Critical Analysis of Software Defects Ability to

Understand using of Software Testing
Samundra Singh1 and Dr. Shivani2

Research Scholar, Department of CS1

Assistant Professor, Department of CS2

Bhagwant University, Ajmer, India

Abstract: Remaining defects are the cause of significant issues in the software development industry and

not fixing them sooner increases the risk of negative effects such as system crashes, customer dissatisfaction

and higher costs. Despite these observations, companies do not always remove newly found defects due to

varying factors. These factors, which lead to longer term defects, are not well studied and therefore require

more research.

Keywords: Cause, Defect, Software, Testing, and Effect etc

I. INTRODUCTION

In today's world people's jobs, comfort, safety, entertainment, decisions and their lives depend on computer software, so

it is better to get it done right [1]. This is one reason why software testing is extremely important. Software testing is as

essential as any other phase of the software development life cycle. Testing should be done before deploying the

software for use, it helps to discover errors in time and ensure the working of the software as required, it also helps to

correct the defects discovered after the product is put into use. reduces. Software testing is an important part of software

quality assurance (SQA), an activity used to evaluate and improve software quality [2]. Software testing includes a set

of activities performed with the sole purpose of finding errors in software. It verifies and verifies whether the software

or product is working correctly without any errors or defects, enabled bugs. In the testing phase, errors from previous

phases should be detected, this ensures software reliability and quality assurance [3]. Software testing tools facilitate

generated information management, communication, test execution, generation and production [6]. Therefore, the use

of appropriate software testing tools effectively and efficiently enhances the testing process. Currently, a large amount

of software testing tools are available to assist at any stage of the testing process [7]. Even though many software

testing tools are primarily useful in managing and keeping track of scheduled or performed software tests; However,

some software testing tools provide automation for core testing tasks [4] ; This reduces costly, time-consuming and

error-prone manual testing [8]. Test automation facilitates the identification of errors and defects in specially developed

software effectively and efficiently; Because it increases the reliability factor, saves time and increases productivity in

human efforts and also reduces costs in the long run [4].

II. LITERATURE REVIEW

Software defect prediction is a hot topic in the field of software engineering. Many fault prediction algorithms have

been proposed [9], which are mainly based on machine learning, such as linear regression model (LRM) [10], decision

tree [11] and ensemble learning [12], etc. The goal of software defect prediction mainly includes two categories:

classification and ranking. The classification task focuses on the correct classification of software parts. Many

algorithms [13, 14] have been proposed, but no conclusion has been drawn on the most optimal algorithm. This paper

focuses on the ranking task. Different from classification, it focuses on testing priority of software parts. By ranking the

prediction results, high-risk software parts can be identified. Elberg and Ohlson proposed an Elberg diagram to

estimate the accuracy of the predictive model. They proved that most software defects were contained in 20% of the

modules. Zimmerman [15] demonstrated that high-complexity modules carry high risks. To improve the efficiency of

ranking prediction, several different approaches have been proposed. Ostrand et al. [16] developed a negative binomial

regression as a predictor for predicting defects in the next release based on the code in the file in the current release.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, September 2023

Copyright to IJARSCT 88

www.ijarsct.co.in

Impact Factor: 7.301

Yang [17, 18] introduced a learning-to-rank (LTR) approach with overall difference evolution to obtain the coefficients

of a linear model. Most of the research in defect prediction mainly focuses on algorithmic improvement and

performance comparison, while little attention is paid to the optimization of forecasting strategy. The novelty of this

paper is to propose an optimization strategy that combines defect prediction and STP to improve the prediction

accuracy. Cross-project defect prediction (CPDP) is another research point related to defect prediction in this paper.

CPDP is often used when automatic prediction is impossible because of not enough training data or poor data quality

[16]. Some experiments [20] have shown that CPDP can provide acceptable prediction results if the training data is

carefully chosen. In addition, Herbold [21] proposed a distance-based strategy for selecting training data. The results

demonstrated that their strategy could significantly improve the effectiveness of CPDP, but it was still not competitive

with defect prediction within the project. Transfer learning [22] was introduced to build a more effective CPDP model

based on weighted data transferred from cross-project data.

OBJECTIVES

To identify the factors that companies consider when deciding whether to allow and retain defects.

METHODS

A two-step method is applied where a snowballing based literature review is used to identify research gaps in order to

gain an understanding of the research area. These results are then complemented by an empirical and industrial case

study with 16 interviews. Interviews were analyzed with an approach inspired by thematic coding, which led to the

main findings of the study.

III. RESULT ANALYSIS

What factors are considered in industrial practice when deciding not to remove a defect?

The results of the interviews identified 11 different factors that lead to slack defects, in short the factors. The results

also indicate that known and unknown defects are treated differently, as factors are considered in different ways. To

find out what factors participants use to perpetuate defections, interviewers were first asked how they define defections,

listed in question 4.5, also to check whether the results match Let's look at how the literature defines defects [13]. The

results indicate a heterogeneous view of what is at fault within the sample. While some interviewees define it as when

the system stops working, others said it is when the system does not respond as expected. These statements are also

related to factors such as the priority of the defects as well as their severity, e.g. minor or major. However, some of the

interviewees also stated that they do not have any known flaws on the system yet. This information was considered

during the analysis to help ensure that the interview results were interpreted correctly. Following, each of the identified

factors is described. Cost: The cost of removing a defect is affected if the defect is fixed, where higher cost leads to

lower priority and thus less likely to be fixed. As Interviewee P5 said, "Um, it could be something that's a trifle and

fixing it will cost more development time than maintaining it". However, this statement is only true when considering

the perceived value of addressing the defect. As such, high value, but costly, defects are more likely to be addressed

than low value defects. This factor is generally considered important, as most of the interviewers (N=10) mention it

during the interview. However, a subset (N=6) either did not mention it, or did not find it significant. Time: Time, as a

complementary metric to cost, is also commonly considered by the interviewers (n = 7) and in relation to the time

required to fix the defect. Time is considered to influence the priority of the defect in the same way as cost, ie cost is

also considered while prioritizing the defects. As stated by interviewee P7 “Some defects take a long time to fix”

Severity: Severity of a defect is one of the main factors mentioned by some of the interviewees (N=4). Interviewees say

that even though they knew that less severe defects could cause problems later in development, many interviewees

chose not to take action. This is mainly the case for defects of low perceived severity, while defects of high perceived

severity are generally addressed. As stated by interviewee P10 when explicitly asked about the factors that are

considered; "How serious is the defect" impact: Impact, defined as the impact on the system or its development, is one

of the more commonly reported factors by most interviewees (N=5). High impact defects are more likely to be

addressed than low impact defects. Difficult to fix "[when] the impact [of the defect] is low" as stated by interviewee

P14: The perceived difficulty of fixing a defect was also expressed by interviewees (N=3). As stated by interviewee

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, September 2023

Copyright to IJARSCT 89

www.ijarsct.co.in

Impact Factor: 7.301

P15 "we don't know how to solve this [defect]". This factor is related to time/cost and so is related to the value provided

by addressing the defect. Therefore, if a defect is considered difficult to fix with little value gain, it is discarded and

may become languishing. Outdated functionality: Defects associated with out-of-date, or legacy, functionality are

considered less important to address by some interviewees (n = 1). Therefore, defects found in new functionality, or

functionality under development, are more likely to be addressed than defects in older, established functionality.

Security: This factor was specifically brought up by interviewees (n = 1) working in companies with systems that deal

with sensitive data. Interviewees stated that defects with a high perceived impact on security are given higher priority

than defects with a low impact. As stated by interviewer P4 "exposing user credentials, or, um, being able to manipulate

data you shouldn't be allowed to do these kinds of things". Affecting the business: Defects affecting the business rather

than the system are given a lower priority by some interviewees (n = 2). It should be noted that this factor was

presented by the developers, meaning their perspective is more on development, whereas a manager may provide a

different answer for priority. As stated by interviewee P4 "But, uh, the impact on the business is always, kind of the

first [thing we consider]". This result also indicates that different roles may value the same factor in different ways.

Impact traffic: This factor was only mentioned by one interviewee (N=1), who was in a company in a domain where

system traffic is important. For this factor, the impact on traffic is related to its assigned priority, which means that

higher impact implies higher priority. This factor also highlights that there is variation in what factors are considered in

different domains. As stated by interviewee P13 "So for us, the first question is always where do these faults affect

traffic". Risk: Risk, mentioned by one interviewee (n = 1), relates to the impact of defects on the project rather than the

product itself. The amount of risk is correlated with the priority of the defect, such that higher risk implies higher

priority. As stated by interviewee P13 "And this is because when you have a defect, you must consider how much of a

risk it is, or if it is a minor or a major defect".

Effect of chronic defects

To what extent do long-lived defects affect a software product? As presented, there are a number of factors that go into

the decision if a defect should be prolonged or not. Additionally, as such, it was determined that there were multiple

reasons for the defects to persist. However, long-standing defects are always likely to have an impact on software

development or its organization. According to the interview results, the impact of defects depends on the severity of the

defect, i.e. if it is a minor or major defect [2]. A synthesis of the interviewers' perceptions on severity leads us to the

following definitions: • Major defect: Any defect that affects the functionality of a system to such an extent that it leads

to a system crash is considered a major defect. Is. • Minor Defect: Any defect which has only minor or no impact on the

functionality of the system is considered as minor defect. For example, performance defects are considered minor

defects by most participants (n = 10). Note that the severity in these definitions focuses on the functional characteristics

of the system. This result could be due to several factors, e.g. Companies policies/preferences, interviewer's knowledge

of non-functional attributes, etc. The purpose of RQ2 was to identify the impact of defects on the system. This was of

interest as related research highlighting defects have negative effects on software systems and therefore assumed that

supporting evidence would be observed [13]. However, the results indicate the opposite as the majority (n = 13) of the

interviewees stated that minor lingering defects have no effect on the system. Interviewee P4 said that "they are living

for us. It may as well be that, because they are minors, they are not causing any problems". In fact, this lack of

effectiveness was cited as one of the reasons why the defects are allowed to persist. According to some of the more

experienced interviewees (n = 5), some of the defectors said that the defects could remain in the system for more than

10 years and would probably never be fixed. However, this observation was not entirely conclusive, as statements from

some interviewees indicated that lingering faults could change and become more dominant over time. Interviewee P9

said that "a defect can last for 20 years if it is not causing problems". For example, it was observed that defects

classified as minor in the past turned into major defects for future releases of the software. As stated by interviewee P2

"It may happen that minor defects become problems later". This change resulted in a major and immediate effort to

rectify the defects. As a result, estimating the impact and impact of defects over time is difficult and can lead to

unforeseen circumstances and additional costs. However, it should be noted that the perceived future impact of a defect

was not obtained as a factor. One reason for this observation may be the perceived complexity of such estimates, which

necessitates future research into the effects of defects over time.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, September 2023

Copyright to IJARSCT 90

www.ijarsct.co.in

Impact Factor: 7.301

IV. CONCLUSION

The study provides industrial practitioners with insight into factors to consider when deciding whether a defect will

persist. Contrary to the body of knowledge, the study also provides evidence, that lingering defects may not be a major

problem in practice. However, due to the size of the study and its interview sample, future research is needed.

BIBLIOGRAPHY

[1]. Pressman, R. S. (n.d.). Software engineePressman, R. S. (n.d.). Software engineering (2nd ed.). New York:

McGraw-Hill Book Company.ring.

[2]. Chauhan, R. K. & Singh, I. (2014). Latest Research and Development on Software Testing Techniques and

Tools, 4(4), 2368–2372.

[3]. Wala, T. & Sharma, A. K. (2014). Improvised Software Testing Tool, 3(9), 573–581.

[4]. Merina, C. (2019). Tool Usability Parameter in Determining the Performance of Software Testing Tool, IJTB

(International J. Technol. Business), 3(1), 8–18.

[5]. Tassey, G. (2002). “The Economic Impacts of Inadequate infrastructure for software testing”. Natl. Inst.

Stand. Technol.

[6]. Raulamo-Jurvanen, P., Mäntylä, M. & Garousi, V. (2017). Choosing the Right Test Automation Tool, in 21st

International Conference on Evaluation and Assessment in Software Engineering (EASE 2017), 21–30.

[7]. Jain, V. & Rajnish, K. (2018). Comparative Study of Software Automation Testing Tools: OpenScript and

Selenium, Int. J. Eng. Res. Appl., 8(2), 29–33.

[8]. E. Arisholm, L. C. Briand, E. B. Johannessen, A systematic and comprehensive investigation of methods to

build and evaluate fault prediction models, Journal of Systems and Software 83 (1) (2010) 2–17.

[9]. R. Malhotra, A systematic review of machine learning techniques for software fault prediction, Applied Soft

Computing 27 (C) (2015) 504–518.

[10]. G. Denaro, L. Lavazza, M. Pez, An empirical evaluation of object oriented metrics in industrial setting,

Journal of Object Technology Vol.

[11]. M. A. D. Almeida, S. Matwin, Machine learning method for software quality model building, in:

International Symposium on Foundations of Intelligent Systems, 1999, pp. 565–573.

[12]. Z. Sun, Q. Song, X. Zhu, Using coding-based ensemble learning to improve software defect prediction, IEEE

Transactions on Systems Man and Cybernetics Part C 42 (6) (2012) 1806–1817.

[13]. T. Menzies, J. Distefano, A. Orrego, M. Chapman, Assessing predictors of software defects, Proceedings

Workshop on Predictive Software Models.

[14]. S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classification models for software defect

prediction: A proposed framework and novel findings, IEEE Transactions on Software Engineering 34 (4)

(2008) 485–496.

[15]. T. Zimmermann, R. Premraj, A. Zeller, Predicting defects for eclipse, in: International Workshop on

Predictor MODELS in Software Engineering, 2007. Promise’07: ICSE Workshops, 2007, pp. 9–9.

[16]. T. J. Ostrand, E. J. Weyuker, R. M. Bell, Predicting the location and number of faults in large software

systems, IEEE Transactions on Software Engineering 31 (4) (2005) 340–355.

[17]. X. Yang, K. Tang, X. Yao, A learning-to-rank approach to software defect prediction, IEEE Transactions on

Reliability 64 (1) (2015) 234–246.

[18]. B. A. Kitchenham, E. Mendes, G. H. Travassos, Cross versus withincompany cost estimation studies: A

systematic review, IEEE Transactions on Software Engineering 33 (5) (2007) 316–329.

[19]. Z. He, F. Shu, Y. Yang, M. Li, Q. Wang, An investigation on the feasibility of cross-project defect

prediction, Automated Software Engineering 19 (2) (2012) 167–199.

[20]. S. Herbold, Training data selection for cross-project defect prediction, in: International Conference on

Predictive MODELS in Software Engineering, 2013, pp. 1–10.

[21]. Y. Ma, G. Luo, X. Zeng, A. Chen, Transfer learning for cross-company software defect prediction,

Information and Software Technology 54 (3) (2012) 248–256.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, September 2023

Copyright to IJARSCT 91

www.ijarsct.co.in

Impact Factor: 7.301

[22]. B. Turhan, T. Menzies, A. B. Bener, J. D. Stefano, On the relative value of cross-company and within-

company data for defect prediction, Empirical Software Engineering 14 (5) (2009) 540–578.

[23]. T. Zimmermann, N. Nagappan, H. Gall, E. Giger, B. Murphy, Crossproject defect prediction:a large scale

experiment on data vs. domain vs. process, in: Joint Meeting of the European Software Engineering

Conference and the ACM Sigsoft International Symposium on Foundations of Software Engineering, 2009,

pp. 91–100.

[24]. E. Kocaguneli, G. Gay, T. Menzies, Y. Yang, J. W. Keung, When to use data from other projects for effort

estimation, in: International Conference on Automated Software Engineering, 2010, pp. 321–324

