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Abstract: Spectral sequences are a fundamental computational tool in homological algebra, offering a
systematic method to compute derived functors such as Ext and Tor, which are central to the study of
modules, sheaves, and chain complexes. This review explores the theoretical background of spectral
sequences, their construction from filtered complexes and double complexes, and highlights key
applications in the computation of derived functors. Examples include the use of Grothendieck spectral
sequences, Cartan—Eilenberg spectral sequences, and spectral sequences arising from exact couples.
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1. INTRODUCTION
Derived functors are indispensable in homological algebra for measuring the failure of exactness of functors. Common

n T " Ryia,
examples include Exty(M, N) and Tor, (M, N)

for R-modules M and N. Direct computation of these functors is often challenging, especially for complex filtrations or
nontrivial extensions. Spectral sequences, introduced by Leray and further developed by Cartan and Eilenberg, provide
an iterative computational framework to approach these problems (Weibel, 1994).
A spectral sequence is typically presented as a collection of pages (E,,d;), where each E, is a bigraded module and
dp: BPO 5 BRFTATHL .

is a differential satisfying d,"=0. The sequence converges to the graded pieces of the
target homology or cohomology:

EPY —s HPY(C)

Where C is a complex associated with the filtered or double complex structure.

SPECTRAL SEQUENCES FROM FILTERED COMPLEXES

Spectral sequences arising from filtered complexes are one of the most fundamental tools in homological algebra,
providing a systematic framework for computing homology or cohomology of complex algebraic structures by breaking
them into manageable stages. Consider a chain complex C-={C,,d,} over a ring R, equipped with an increasing
filtration F of sub complexes

D= F % C R c R o CEEN ="
where each F,C- - is itself a subcomplex of C- This filtration allows one to study the complex incrementally by
analyzing successive “layers” of the filtration. The associated graded complex is defined as

Gr (") = B,C"/E, i C*

And captures the structure of the successive quotients in the filtration. The key idea of spectral sequences is that instead
of attempting to compute the homology of the entire complex Hn(C-) at once, one can iteratively compute homology on
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these graded pieces, propagating information through successive approximations called “pages” Er of the spectral

P
sequence. The first page of the spectral sequence, denoted Ey ‘is obtained from the graded complex as
P4 _ Gl (0P = p+q / p+q
B = Gr, (CPY) = By0PY By 1O

P . P g+l
With differential %0 £o" — o

gives the first derived page
X + F .
B = HPG, (C7))

Which captures the initial approximation of the total homology by analyzing the layers individually? Higher
d;:..q . E},"‘f oy E_§+T,-q—r‘+1

induced from the differential of the complex C- The homology of this page

differentials propagate corrections that account for interactions between different layers,

.4
gradually refining the approximation. As r—oo the spectral sequence stabilizes, and the limiting page B satisfies

ERY = Gry HP*(C") A . . L
thus reconstructing the homology of the original complex from the filtered pieces. This entire
construction can be summarized in a single unifying formula capturing the essence of the spectral sequence arising
from a filtered complex:
EPM = HPH(GrE (CY) — HPY(C*), ERS = Grf HP(C*)
His formula embodies the dual role of spectral sequences: it both decomposes the problem into simpler homology
computations and ensures convergence to the desired total homology. The strength of this method lies in its ability to
handle highly intricate complexes that are otherwise intractable. For example, in the study of filtered chain complexes
arising from simplicial or cellular decompositions in topology, one can associate a filtration by skeletal sub complexes,
with F,C" being generated by n-chains in the p-skeleton. In such a case, the spectral sequence allows one to compute
the homology of the entire space by iteratively examining lower-dimensional skeletons and their contributions to
higher-dimensional homology.
Another important application arises in homological algebra over rings: given a module M with a filtration F by sub
modules, the spectral sequence from the filtered complex associated with a projective resolution of M enables the
computation of derived factors such as Ext and Tor in stages, starting from the graded components of the resolution.
This method is particularly powerful when modules or complexes possess naturally compatible filtrations, for instance,
in the study of chain complexes arising from tensor products, exact sequences, or sheaf co homology in algebraic
geometry. Moreover, spectral sequences from filtered complexes can be linked with other constructions, such as double
complexes, by taking horizontal or vertical filtrations, further expanding their computational scope.
The convergence of the spectral sequence ensures that while initial pages may only approximate the total homology, the
process systematically refines the computation, correcting for higher-order interactions between filtration layers until
the full homology emerges. Beyond purely computational advantages, filtered complex spectral sequences also provide
deep theoretical insight: the associated graded pieces Elp, often reveal structural patterns and invariants of the
underlying algebraic or topological objects, allowing algebraists and topologists to detect hidden relationships between
sub complexes or sub modules.
For instance, in filtered differential graded algebras, the spectral sequence may identify torsion phenomena, extension
problems, or obstructions that are otherwise invisible in the unfiltered complex. In practical computation, once the
filtration and associated graded complex are defined, one constructs the initial page EO, computes its homology to
obtain E1, and iteratively applies the differentials until stabilization. The final convergence formula

P o Fyrptqpe
Bl = G e
Guarantees that the process successfully reconstructs the total homology of C- while providing rich intermediate data at

each stage. In summary, spectral sequences from filtered complexes transform the complex problem of computing
homology into an organized, multi-stage process, with the single unifying formula
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EY* = HPY(Gr, (C*)) => HPY(C®), ER? = Gr, H™™(C")

Encapsulating the essence of the construction. This approach not only facilitates concrete computations in algebra and
topology but also offers a conceptual framework to understand the layered structure of complexes, modules, and
sheaves in modern homological algebra.

Consider a chain complex C- of R-modules with an increasing filtration F:

0=F,C°CFRC'C---CF,C*"=C"
The associated graded complex is
f.‘ . :
Gli'p [C') f— F})C-pr_lc.
The spectral sequence E;”4 arising from this filtration satisfies:

BM = Hpﬂ(Grg(C')) and converges to HP™(C"*)

This framework allows one to reduce complex computations of Hn(C-) to computations on simpler graded pieces,
which is particularly useful in computing derived functors of composed functors (Mc Cleary, 2001).

GROTHENDIECK SPECTRAL SEQUENCE AND DERIVED FUNCTORS

The Grothendieck spectral sequence is one of the most powerful conceptual tools in homological algebra, providing a
deep and systematic way to compute derived functors of a composite of functors by expressing them in terms of the
derived functors of each component, and at its heart lies a single unifying formula, namely

E}? = RPF(RIG(-)) = RFY(F o G)(-),

Which compactly encodes a vast amount of structural and computational information? To appreciate the significance of
this formula, one begins with the notion of derived functors, which arise naturally when a functor between abelian
categories fails to be exact. Given a left exact functor, such as Hom, global sections, or invariants under a group action,
its higher derived functors measure precisely how far exactness fails, capturing hidden extension and obstruction data
that cannot be seen at the level of objects alone.

When two such functors G:A—B and F:B—C are composed, the naive expectation that the derived functors of FoG
should be obtained simply by composing the derived functors of F and G is generally false, and the Grothendieck
spectral sequence is the refined mechanism that corrects this intuition. Under suitable hypotheses typically that A, B, C
are abelian categories with enough injectives, that G sends injective objects of A to F-acyclic objects of B, and that both
F and G are left exact the spectral sequence above exists and converges to the derived functors of the composite.
Conceptually, the formula says that one should first resolve an object by injectives in A, apply G, then compute the
derived functors of G, and finally apply the derived functors of F to the results, but that this process organizes itself not
as a simple composition but as a multi-layered approximation whose successive stages are captured by the pages of a
spectral sequence.

The E? -page, given explicitly by RPF(RIG(-)) is particularly important because it is often computable in concrete

situations, while the abutment RP ”\F ° G}(_) represents the ultimate target of interest. This single formula thus
bridges local computations with global outcomes, revealing how homological complexity propagates through functorial
composition. From a categorical perspective, the Grothendieck spectral sequence embodies the philosophy that derived
categories and homological constructions are inherently hierarchical, and that information is best understood through
filtrations and successive approximations rather than direct formulas.

Historically, Grothendieck introduced this spectral sequence in the context of sheaf cohomology, where it provides the
theoretical foundation for many classical results, such as the Leray spectral sequence for a continuous map of
topological spaces or a morphism of schemes, which itself is a special case of the general formula with G as the direct
image functor and F as the global sections functor. In algebra, the same formalism explains relationships between Ext
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and Tor groups, group cohomology, and derived functors of invariants or coinvariants, again all subsumed under the

Pa _ e RPH(F o ()
single expression Ey RPF(RIG(-)) = RFT(F o G)(-).

The power of this formula lies not merely in
computation but in structure: it provides long exact sequences, filtration results, and vanishing criteria by analyzing the
behavior of the E,-terms, and it allows one to deduce properties of complicated derived functors from simpler building
blocks. Moreover, it highlights a central theme of modern mathematics, namely that complex phenomena can often be
understood by decomposing them into layered processes whose interactions are governed by universal principles.

In practice, many important theorems reduce to showing that certain E,”* terms vanish, forcing the spectral sequence to
collapse and yielding direct isomorphisms between derived functors; in other cases, the differentials encode subtle
extension data that reflects deep geometric or algebraic features of the objects under study. Thus, although the
Grothendieck spectral sequence is often presented through elaborate constructions involving double complexes and
filtrations, its essence is distilled into a single elegant formula that captures the relationship between composition and
derivation, making it a cornerstone of homological algebra, algebraic geometry, and beyond.

Let F: A—B and G: B—C be left-exact functors between abelian categories, and assume F sends G-acyclic objects to
G-acyclic objects. The Grothendieck spectral sequence computes the derived functors of the composition GoF:

EY? = (R’G)(R'F)(A) = RPYI(G o F)(A)

Where R" denotes the n-th right derived functor. This spectral sequence is particularly useful in algebraic geometry and
sheaf cohomology, as it allows the computation of derived functors in two stages (Weibel, 1994; Gelfand & Manin,
2003).

. , R'T(X,F)
Example: For a sheaf F on a topological space X and an open cover U, one can compute

EY' = HP(HY(U,F)) — HPYY(X,F)

using:

CARTAN-EILENBERG SPECTRAL SEQUENCE

The Cartan—Eilenberg spectral sequence is one of the most fundamental constructions in homological algebra,
providing a powerful mechanism to compute the (co)homology of a total complex arising from a double complex,
especially when derived functors are composed. At its core, the Cartan—Eilenberg spectral sequence can be
encapsulated symbolically in a single guiding formula that expresses how homology is computed iteratively from
simpler pieces, namely

EPY =~ RPF(R'G(A)) —> RFYY(FoG)(A)

And this compact expression captures the conceptual essence, computational purpose, and theoretical depth of the
Cartan—FEilenberg spectral sequence in one unified statement. In this formula, A is an object of an abelian category, G
and F are left exact functors between abelian categories with enough injectives, RqG denotes the g-th right derived
functor of G, and RpF denotes the p-th right derived functor of F; the symbol = indicates convergence of the spectral
sequence to the derived functors of the composite functor FoeGF. This single formula summarizes the entire philosophy
of the Cartan—Eilenberg construction: rather than attempting to compute the derived functors of a composite functor
directly, which is often difficult or impractical, one computes them step by step through an intermediate filtration
encoded by the spectral sequence. Conceptually, the formula reflects the idea that homological information can be
extracted layer by layer, first by resolving the object A to compute R G, and then by resolving those resulting objects to

RPF(RIG(A))

processes.

From a structural perspective, this formula arises from a Cartan—Eilenberg resolution, which is a special type of double
complex built from injective resolutions that are compatible in both directions. Starting with an object A, one first takes
an injective resolution with respect to the functor G, and then each term in that resolution is further resolved injectively
with respect to F. The resulting double complex Ip, has horizontal and vertical differentials corresponding to the

compute with the spectral sequence organizing the interaction between these two homological
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resolutions for F and G, respectively. The total complex Tot(I',-) computes the derived functors of the composite FoG,
while the associated spectral sequence extracts information by filtering this total complex along one direction. The

E}?= RPF(RG(A))

formula

B} — RPY(F o G)(A)

The convergence statement ~ 2 is equally significant; as it asserts that the spectral sequence

i . . . n=p+q. . . .
stabilizes and reconstructs the desired derived functors in total degree i This convergence is typically

guaranteed under standard boundedness or exactness conditions, such as when G sends injective objects to F-acyclic
objects. Within the formula, convergence reflects a deep homological principle: although derived functors of composite
functors are not, in general, simple compositions of derived functors, the obstruction to such simplicity is precisely

drd - P4 _y ppirg-r+l
measured by the higher differentials of the spectral sequence. Each differential " ¥ = encodes

hidden extension data, and the eventual collapse or stabilization of these differentials determines how the iterated
derived functors assemble into the final derived functor of the composite. In this way, the single formula compactly
represents both the approximation and the correction mechanism inherent in homological algebra.

Historically, this formula and the spectral sequence it represents were introduced by Henri Cartan and Samuel
Eilenberg as part of their foundational work on homological algebra, particularly in their effort to systematize derived
functors and cohomology theories. The Cartan—Eilenberg spectral sequence became a unifying tool connecting
algebraic topology, algebraic geometry, and module theory, as it provides a general framework for understanding how
complex homological invariants are built from simpler ones. For example, in group cohomology, the Lyndon—
Hochschild—Serre spectral sequence is a special case of the Cartan—Eilenberg spectral sequence, and its governing
principle can be traced directly back to the single formula above. Similarly, in sheaf cohomology, the Grothendieck
spectral sequence, which computes the derived functors of a composite of two functors between categories of sheaves,
is an explicit realization of the Cartan—Eilenberg framework expressed by this formula.

Philosophically, the importance of expressing the Cartan—Eilenberg spectral sequence in a single formula lies in its
ability to condense a highly technical construction into a transparent conceptual statement. The formula highlights the
layered nature of homological computation, the role of resolutions and exactness, and the manner in which global
information emerges from local or intermediate data. It emphasizes that spectral sequences are not mysterious algebraic
gadgets but are systematic bookkeeping devices that track how homology is assembled across multiple degrees and
functorial steps. Thus, the expression

EPY =~ RPF(RYG(A)) — RP™4(F o G)(A)
Serves not only as the defining formula of the Cartan—Eilenberg spectral sequence but also as a conceptual roadmap for

understanding its construction, convergence, and applications across modern mathematics.

Given a double complex C-, with horizontal and vertical differentials 'd" and d”, one can form total complexes Tot

Tot(C**)and associated spectral sequences. The Cartan—Eilenberg spectral sequence is:

E{),q _ H‘?(Cp",d") or E{J-Q‘ - Hﬁ?(ct,q;dr)

. HP(Tot(C**)) . L
Converging to This method is widely used to compute Tor and Ext groups for complexes of modules
or sheaves (Cartan & Eilenberg, 1956).

Equation Example for Tor:
I ~
Tor(M,N) = H,(Tot(P. ® Q.))
Where P.—>MP are projective resolutions and the associated spectral sequence gives:

E?, = Tor, (Hy(Q.),M) = Tor}_(M,N)
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Applications and Examples
Group Cohomology: Hochschild—Serre spectral sequence computes Hn(G,M) from a normal subgroup GN=G:

E}! = HY(G/N,HY(N,M)) = H**Y(G,M)

Algebraic Geometry: Derived functors of pushforward and pullback of sheaves, e.g., Rnfx(F), are effectively
computed using Grothendieck spectral sequences.

Homological Algebra: Computation of Ext and Tor groups via double complex resolutions is streamlined using
Cartan—FEilenberg spectral sequences.

These examples highlight the practical power of spectral sequences in reducing intricate computations into manageable
iterative stages.

II. CONCLUSION
Spectral sequences provide a systematic framework to compute derived functors in homological algebra. They simplify
complex computations by breaking them into successive approximations via pages of the sequence, allowing for
concrete calculations of Ext, Tor, and other homological invariants. Future research continues to explore spectral
sequences in higher categorical contexts and computational homological algebra.
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