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Abstract: Spectral sequences are a fundamental computational tool in homological algebra, offering a 

systematic method to compute derived functors such as Ext and Tor, which are central to the study of 

modules, sheaves, and chain complexes. This review explores the theoretical background of spectral 

sequences, their construction from filtered complexes and double complexes, and highlights key 

applications in the computation of derived functors. Examples include the use of Grothendieck spectral 

sequences, Cartan–Eilenberg spectral sequences, and spectral sequences arising from exact couples. 
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I. INTRODUCTION 

Derived functors are indispensable in homological algebra for measuring the failure of exactness of functors. Common 

examples include  

for R-modules M and N. Direct computation of these functors is often challenging, especially for complex filtrations or 

nontrivial extensions. Spectral sequences, introduced by Leray and further developed by Cartan and Eilenberg, provide 

an iterative computational framework to approach these problems (Weibel, 1994). 

A spectral sequence is typically presented as a collection of pages (Er,dr), where each Er  is a bigraded module and 

is a differential satisfying dr
2=0. The sequence converges to the graded pieces of the 

target homology or cohomology: 

 
Where C is a complex associated with the filtered or double complex structure. 

 

SPECTRAL SEQUENCES FROM FILTERED COMPLEXES 

Spectral sequences arising from filtered complexes are one of the most fundamental tools in homological algebra, 

providing a systematic framework for computing homology or cohomology of complex algebraic structures by breaking 

them into manageable stages. Consider a chain complex C∙={Cn,dn} over a ring R, equipped with an increasing 

filtration F of sub complexes 

 
where each FpC∙ ∙ is itself a subcomplex of C∙ This filtration allows one to study the complex incrementally by 

analyzing successive “layers” of the filtration. The associated graded complex is defined as 

 
And captures the structure of the successive quotients in the filtration. The key idea of spectral sequences is that instead 

of attempting to compute the homology of the entire complex Hn(C∙) at once, one can iteratively compute homology on 
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these graded pieces, propagating information through successive approximations called “pages” Er of the spectral 

sequence. The first page of the spectral sequence, denoted is obtained from the graded complex as  

 

With differential induced from the differential of the complex C∙ The homology of this page 

gives the first derived page 

 
Which captures the initial approximation of the total homology by analyzing the layers individually? Higher 

differentials  propagate corrections that account for interactions between different layers, 

gradually refining the approximation. As r→∞ the spectral sequence stabilizes, and the limiting page satisfies 

thus reconstructing the homology of the original complex from the filtered pieces. This entire 

construction can be summarized in a single unifying formula capturing the essence of the spectral sequence arising 

from a filtered complex: 

 
His formula embodies the dual role of spectral sequences: it both decomposes the problem into simpler homology 

computations and ensures convergence to the desired total homology. The strength of this method lies in its ability to 

handle highly intricate complexes that are otherwise intractable. For example, in the study of filtered chain complexes 

arising from simplicial or cellular decompositions in topology, one can associate a filtration by skeletal sub complexes, 

with FpC
n  being generated by n-chains in the p-skeleton. In such a case, the spectral sequence allows one to compute 

the homology of the entire space by iteratively examining lower-dimensional skeletons and their contributions to 

higher-dimensional homology.  

Another important application arises in homological algebra over rings: given a module M with a filtration F by sub 

modules, the spectral sequence from the filtered complex associated with a projective resolution of M enables the 

computation of derived factors such as Ext and Tor in stages, starting from the graded components of the resolution. 

This method is particularly powerful when modules or complexes possess naturally compatible filtrations, for instance, 

in the study of chain complexes arising from tensor products, exact sequences, or sheaf co homology in algebraic 

geometry. Moreover, spectral sequences from filtered complexes can be linked with other constructions, such as double 

complexes, by taking horizontal or vertical filtrations, further expanding their computational scope.  

The convergence of the spectral sequence ensures that while initial pages may only approximate the total homology, the 

process systematically refines the computation, correcting for higher-order interactions between filtration layers until 

the full homology emerges. Beyond purely computational advantages, filtered complex spectral sequences also provide 

deep theoretical insight: the associated graded pieces E1p, often reveal structural patterns and invariants of the 

underlying algebraic or topological objects, allowing algebraists and topologists to detect hidden relationships between 

sub complexes or sub modules.  

For instance, in filtered differential graded algebras, the spectral sequence may identify torsion phenomena, extension 

problems, or obstructions that are otherwise invisible in the unfiltered complex. In practical computation, once the 

filtration and associated graded complex are defined, one constructs the initial page E0, computes its homology to 

obtain E1, and iteratively applies the differentials until stabilization. The final convergence formula 

 
Guarantees that the process successfully reconstructs the total homology of C∙ while providing rich intermediate data at 

each stage. In summary, spectral sequences from filtered complexes transform the complex problem of computing 

homology into an organized, multi-stage process, with the single unifying formula 
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Encapsulating the essence of the construction. This approach not only facilitates concrete computations in algebra and 

topology but also offers a conceptual framework to understand the layered structure of complexes, modules, and 

sheaves in modern homological algebra. 

Consider a chain complex C∙ of R-modules with an increasing filtration F: 

 
The associated graded complex is 

 
The spectral sequence Er

p,q arising from this filtration satisfies: 

 
This framework allows one to reduce complex computations of Hn(C∙) to computations on simpler graded pieces, 

which is particularly useful in computing derived functors of composed functors (Mc Cleary, 2001). 

 

GROTHENDIECK SPECTRAL SEQUENCE AND DERIVED FUNCTORS 

The Grothendieck spectral sequence is one of the most powerful conceptual tools in homological algebra, providing a 

deep and systematic way to compute derived functors of a composite of functors by expressing them in terms of the 

derived functors of each component, and at its heart lies a single unifying formula, namely 

 
Which compactly encodes a vast amount of structural and computational information? To appreciate the significance of 

this formula, one begins with the notion of derived functors, which arise naturally when a functor between abelian 

categories fails to be exact. Given a left exact functor, such as Hom, global sections, or invariants under a group action, 

its higher derived functors measure precisely how far exactness fails, capturing hidden extension and obstruction data 

that cannot be seen at the level of objects alone.  

When two such functors G:A→B and F:B→C are composed, the naive expectation that the derived functors of F∘G 

should be obtained simply by composing the derived functors of F and G is generally false, and the Grothendieck 

spectral sequence is the refined mechanism that corrects this intuition. Under suitable hypotheses typically that A, B, C 

are abelian categories with enough injectives, that G sends injective objects of A to F-acyclic objects of B, and that both 

F and G are left exact the spectral sequence above exists and converges to the derived functors of the composite. 

Conceptually, the formula says that one should first resolve an object by injectives in A, apply G, then compute the 

derived functors of G, and finally apply the derived functors of F to the results, but that this process organizes itself not 

as a simple composition but as a multi-layered approximation whose successive stages are captured by the pages of a 

spectral sequence.  

The E2 -page, given explicitly by  is particularly important because it is often computable in concrete 

situations, while the abutment  represents the ultimate target of interest. This single formula thus 

bridges local computations with global outcomes, revealing how homological complexity propagates through functorial 

composition. From a categorical perspective, the Grothendieck spectral sequence embodies the philosophy that derived 

categories and homological constructions are inherently hierarchical, and that information is best understood through 

filtrations and successive approximations rather than direct formulas. 

 Historically, Grothendieck introduced this spectral sequence in the context of sheaf cohomology, where it provides the 

theoretical foundation for many classical results, such as the Leray spectral sequence for a continuous map of 

topological spaces or a morphism of schemes, which itself is a special case of the general formula with G as the direct 

image functor and F as the global sections functor. In algebra, the same formalism explains relationships between Ext 
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and Tor groups, group cohomology, and derived functors of invariants or coinvariants, again all subsumed under the 

single expression  The power of this formula lies not merely in 

computation but in structure: it provides long exact sequences, filtration results, and vanishing criteria by analyzing the 

behavior of the E2-terms, and it allows one to deduce properties of complicated derived functors from simpler building 

blocks. Moreover, it highlights a central theme of modern mathematics, namely that complex phenomena can often be 

understood by decomposing them into layered processes whose interactions are governed by universal principles.  

In practice, many important theorems reduce to showing that certain E2
p,q  terms vanish, forcing the spectral sequence to 

collapse and yielding direct isomorphisms between derived functors; in other cases, the differentials encode subtle 

extension data that reflects deep geometric or algebraic features of the objects under study. Thus, although the 

Grothendieck spectral sequence is often presented through elaborate constructions involving double complexes and 

filtrations, its essence is distilled into a single elegant formula that captures the relationship between composition and 

derivation, making it a cornerstone of homological algebra, algebraic geometry, and beyond. 

Let F: A→B and G: B→C be left-exact functors between abelian categories, and assume F sends G-acyclic objects to 

G-acyclic objects. The Grothendieck spectral sequence computes the derived functors of the composition G∘F: 

 
Where Rn denotes the n-th right derived functor. This spectral sequence is particularly useful in algebraic geometry and 

sheaf cohomology, as it allows the computation of derived functors in two stages (Weibel, 1994; Gelfand & Manin, 

2003). 

Example: For a sheaf F on a topological space X and an open cover U, one can compute using: 

 
 

CARTAN–EILENBERG SPECTRAL SEQUENCE 

The Cartan–Eilenberg spectral sequence is one of the most fundamental constructions in homological algebra, 

providing a powerful mechanism to compute the (co)homology of a total complex arising from a double complex, 

especially when derived functors are composed. At its core, the Cartan–Eilenberg spectral sequence can be 

encapsulated symbolically in a single guiding formula that expresses how homology is computed iteratively from 

simpler pieces, namely 

 
And this compact expression captures the conceptual essence, computational purpose, and theoretical depth of the 

Cartan–Eilenberg spectral sequence in one unified statement. In this formula, A is an object of an abelian category, G 

and F are left exact functors between abelian categories with enough injectives, Rq
G denotes the q-th right derived 

functor of G, and Rp
F denotes the p-th right derived functor of F; the symbol ⟹ indicates convergence of the spectral 

sequence to the derived functors of the composite functor F∘GF. This single formula summarizes the entire philosophy 

of the Cartan–Eilenberg construction: rather than attempting to compute the derived functors of a composite functor 

directly, which is often difficult or impractical, one computes them step by step through an intermediate filtration 

encoded by the spectral sequence. Conceptually, the formula reflects the idea that homological information can be 

extracted layer by layer, first by resolving the object A to compute RqG, and then by resolving those resulting objects to 

compute  with the spectral sequence organizing the interaction between these two homological 

processes. 

From a structural perspective, this formula arises from a Cartan–Eilenberg resolution, which is a special type of double 

complex built from injective resolutions that are compatible in both directions. Starting with an object A, one first takes 

an injective resolution with respect to the functor G, and then each term in that resolution is further resolved injectively 

with respect to F. The resulting double complex Ip, has horizontal and vertical differentials corresponding to the 
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resolutions for F and G, respectively. The total complex Tot(I∙,∙) computes the derived functors of the composite F∘G, 

while the associated spectral sequence extracts information by filtering this total complex along one direction. The 

formula   

The convergence statement  is equally significant; as it asserts that the spectral sequence 

stabilizes and reconstructs the desired derived functors in total degree  This convergence is typically 

guaranteed under standard boundedness or exactness conditions, such as when G sends injective objects to F-acyclic 

objects. Within the formula, convergence reflects a deep homological principle: although derived functors of composite 

functors are not, in general, simple compositions of derived functors, the obstruction to such simplicity is precisely 

measured by the higher differentials of the spectral sequence. Each differential encodes 

hidden extension data, and the eventual collapse or stabilization of these differentials determines how the iterated 

derived functors assemble into the final derived functor of the composite. In this way, the single formula compactly 

represents both the approximation and the correction mechanism inherent in homological algebra. 

Historically, this formula and the spectral sequence it represents were introduced by Henri Cartan and Samuel 

Eilenberg as part of their foundational work on homological algebra, particularly in their effort to systematize derived 

functors and cohomology theories. The Cartan–Eilenberg spectral sequence became a unifying tool connecting 

algebraic topology, algebraic geometry, and module theory, as it provides a general framework for understanding how 

complex homological invariants are built from simpler ones. For example, in group cohomology, the Lyndon–

Hochschild–Serre spectral sequence is a special case of the Cartan–Eilenberg spectral sequence, and its governing 

principle can be traced directly back to the single formula above. Similarly, in sheaf cohomology, the Grothendieck 

spectral sequence, which computes the derived functors of a composite of two functors between categories of sheaves, 

is an explicit realization of the Cartan–Eilenberg framework expressed by this formula. 

Philosophically, the importance of expressing the Cartan–Eilenberg spectral sequence in a single formula lies in its 

ability to condense a highly technical construction into a transparent conceptual statement. The formula highlights the 

layered nature of homological computation, the role of resolutions and exactness, and the manner in which global 

information emerges from local or intermediate data. It emphasizes that spectral sequences are not mysterious algebraic 

gadgets but are systematic bookkeeping devices that track how homology is assembled across multiple degrees and 

functorial steps. Thus, the expression 

 
Serves not only as the defining formula of the Cartan–Eilenberg spectral sequence but also as a conceptual roadmap for 

understanding its construction, convergence, and applications across modern mathematics. 

Given a double complex C∙, with horizontal and vertical differentials 'd′ and d′′, one can form total complexes Tot 

and associated spectral sequences. The Cartan–Eilenberg spectral sequence is: 

 

Converging to This method is widely used to compute Tor and Ext groups for complexes of modules 

or sheaves (Cartan & Eilenberg, 1956). 

 

Equation Example for Tor: 

 
Where P∙→MP are projective resolutions and the associated spectral sequence gives: 
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Applications and Examples 

Group Cohomology: Hochschild–Serre spectral sequence computes Hn(G,M) from a normal subgroup GN⊴G: 

 
Algebraic Geometry: Derived functors of pushforward and pullback of sheaves, e.g., Rnf∗(F), are effectively 

computed using Grothendieck spectral sequences. 

Homological Algebra: Computation of Ext and Tor groups via double complex resolutions is streamlined using 

Cartan–Eilenberg spectral sequences. 

These examples highlight the practical power of spectral sequences in reducing intricate computations into manageable 

iterative stages. 

 

II. CONCLUSION 

Spectral sequences provide a systematic framework to compute derived functors in homological algebra. They simplify 

complex computations by breaking them into successive approximations via pages of the sequence, allowing for 

concrete calculations of Ext, Tor, and other homological invariants. Future research continues to explore spectral 

sequences in higher categorical contexts and computational homological algebra. 
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