
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 5, Issue 2, May 2021

Copyright to IJARSCT DOI: 10.48175/568 498
 www.ijarsct.co.in

 Impact Factor: 4.819

Interservice Communication in Microservices
Christy Sibi Pachikkal

Department of Information Technology

Sir Sitaram and Lady Shantabai Patkar College of Arts and Science, Mumbai, India

Abstract: Microservices based applications are distributed and for each service can run on a different

machine. Due to its distributed pattern, one of the key challenges when designing applications is the

mechanism by which services communicate with each other. Communication among microservices must

be efficient and robust. With many small services interacting to complete a single business activity, this

can be a task . If we are talking about communication styles, it is possible to classify them in two axes. In

this article, we look at the compromises between asynchronous messaging versus synchronous

communication. Since it is common for each service instance to work as a separate process, services

need to work using a process communication protocol.

Keywords: Approaches, One to One, One to Many Communication Styles, Interservice Communication

Patterns

I. INTRODUCTION

 In the Microservice architecture pattern, a distributed system is running on a number of different machines, and each

service is a component or process of an enterprise application. That means these services working at the multiple

machines must handle requests from the clients of this enterprise application. Sometimes all these services work

together to handle those requests. So, all services interact using an inter-service communication method. But in case of

the Monolithic application, all components are the part o f the same application and run on the same system. So,

Monolithic application does not require a communication which has inter-service mechanism. Microservices

architecture implies of having a collection of loosely coupled services. These services can be deployed individually

from each other and provide great flexibility and productivity. The goal of the microservices is to sufficiently

decompose and decouple the application into loosely coupled services structured around business capabilities. A

monolithic application has all its components combined as a single object and deployed to a single machine. One

component call another using language-level method calls. However, in the microservice architecture, all components

of the applications run on several machines as a process or service, and they use inter-service communication to interact

with each other. Microservices frameworks usually execute a consumer grouping mechanism whereby different

instances of a single application have been placed in a competing consumer relationship in which only one instance is

expected to handle an incoming message . In Microservice Architecture, we can classify our inter-service

communication into two approaches like the following:

1. Synchronous communication style

2. Asynchronous communication style

II. APPROACHES FOR DIFFERENT MICROSERVICE INTERSERVICE COMMUNICATION PATTERNS

 Decisions related to such a division require knowledge about the business aspects of a system, but communication

standards can be easily defined, and they are unchangeable no matter which approach to architecture we decide to

implement. If we are talking about communication styles, it is possible to classify them in two different forms. The first

step is to define whether a protocol is synchronous or asynchronous communication.

2.1. Synchronous Inter-service Communication Style

 Synchronous communication is often regarded as request/response interaction style and pattern. One microservice

makes a request to another service and waits for the services to process the result and send a response back. In this

style, it is common that the requester blocks its operation while waiting for a response from the remote server. In this

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 5, Issue 2, May 2021

Copyright to IJARSCT DOI: 10.48175/568 499
 www.ijarsct.co.in

 Impact Factor: 4.819

type of communication style, the client service expects a response within time and wait for a response by blocking a

while. This style can be used by simply using HTTP protocol usually in the form of REST. It is the simplest feasible

solution for microservices inter-service communication to interact with services. The client can make a REST call to

interact with other services. The client sends a request to the server and waits for a response from the service (JSON

over HTTP). Representational state transfer (REST) application programming interfaces: API and gRPC are the most

common framework for implementing synchronous form of communication style in microservices.

 REST API: REST is an architectural style that is most commonly used for designing APIs for modern web

services. In a system which uses REST API for its IPC i.e. (inter process communication), each service

normally has its own web server up and running on a specific port such as 8080 or 443, and each service

displays a set of endpoints to enable the interactions with other microservices and exchange of communication

between them. The server that interacts directly with client through its interface can also be identified as

WebAPI

 gRPC: gRPC is an open -source high performance RPC framework designed and developed by Google.

Remote procedure call (RPC) is a mechanism used in several distributed applications to expedite inter service

communication. RPC was first implemented by Birrell and Nelson and it has been regarded as a protocol that

enables a communication exchange between two process with characteristics of low overhead, simplicity, and

transparency. By default, if when a client sends a request to a server it halt the process and waits for the results

to be returned. RPC or Remote Procedure call is therefore considered as synchronous form of communication.

Example: if we look into any e-commerce application. When a customer searches for a specific product to purchase,

then that product’s availability needs to be confirmed in the inventory by making a request to product convenience

service. Because customer should know about what the current availability of the product to place the order. In this

case, we can use synchronous form of communication to know about the product’s real - time availability in inventory

and price information.

Figure 1: Synchronous communication style

2.2 Synchronous One-to-One Interservice Communication Style

 Most synchronous communications are one-to -one style. In synchronous one-to -one communication, you can also

use numerous instances of a service to scale the service. However, if you try to do, you will have to use a load-

balancing mechanism or methods on the client side. Each service includes meta-information about all instances of the

calling service. For one-to-one synchronous services, the same can be achieved with a load-balancing method

performed on the client side. Each service has information about the location addresses of all instances that are calling

services. This information can be taken from a se rvice discovery server or may be provided manually in configuration

properties. Each service is having a built-in routing client that can choose one instance of a target service, using the

right algorithm, and send a request there. As you can see in the following diagram, we have multiple instances of a

specific service, but the services are still communicating one-to -one. That means that each service communicates to an

instance of an alternative service. The load balancer selects which method should be called. The following is a list of

some of the most commonly used load -balancing methods:

 Round-Robin: This is the simplest method among all that routes requests across all the instances in sequence.

Client requests are allocated to application servers in rotation. For example, if you are having three application

servers: the first client request to the first application server in the list, the second client request to the second

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 5, Issue 2, May 2021

Copyright to IJARSCT DOI: 10.48175/568 500
 www.ijarsct.co.in

 Impact Factor: 4.819

application server in the list , the third client request to the third application server in the list , the fourth to the

first application server and so on by continuing the process.

 Least Connections: This is a method in which the requests goes to the instance that has the fewest number of

connections at the time. In this, the request goes to the instance that is processing with the least number of

active connections at the existing time. In cases where application servers have similar specifications, an

application server may be overloaded due to extended long lived connections; at that time this algorithm takes

only the active connection as load into consideration.

 Weighted Round-Robin: This is an algorithm that allocates a weight to each particular instance and forwards

the connection according to this weight. Weighted Round Robin are builds on the simple Round-robin load

balancing algorithm to account for differing application server characteristics. The administrator assigns a

weight for each application server based on criteria of their choosing to demonstrate the application servers’

traffic handling.

Figure 2: Synchronous one-to-one communication style

 IP Hash: This is a t ype of method that generates a unique hash key from the source IP address and defines

which instance takes the request. It combines source and destination IP addresses of the client and server to

produce a unique hash key. The key is used to allocate the client to a specific server. As this key can be

regenerated if the session is broken, the client request is directed to the same server it was using previously.

This is useful if it is important when a client should connect to a session that is still active after a

disconnection.

Figure 3: Interservice Communication Interaction Types

2.3 Asynchronous Inter-Service Communication Style

 The asynchronous form of communication can be implemented in microservices when services exchange messages

with each other through a message broker. In this form of communication, the message broker acts as an intermediary

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 5, Issue 2, May 2021

Copyright to IJARSCT DOI: 10.48175/568 501
 www.ijarsct.co.in

 Impact Factor: 4.819

between services to coordinate the request and responses. One of the fundamental differences in asynchronous

communication as compared to the synchronous mode is that in asynchronous communication the client no longer

makes a direct call to the server and expect an immediate answer. Instead, other services subscribe to the same broker

to pick -up the available requests and process them further before placing them back to the message queue. In this

communication style, the client service doesn’t wait for the response coming from another service. So, here the client

does not block a thread while it is waiting for a response from the server. Such type of communications is possible by

using lightweight messaging brokers. The message producer service does not wait for a response. It just generates

message and sends message to the broker; it waits for the only acknowledgement from the message broker to know the

message has been received from message broker or not. Failure isolation is well in asynchronous communication.

Because if a message broker fails to send the message, once the message broker gets retrieved it will resend the

message again. We can see in the following fig:

Figure 4: Asynchronous Communication Style

 As you can see in the following diagram, the Order Service produces a message to a Message Broker and then forgets

about it. The Book Service which subscribes to a topic is fed with all the messages belonging to that topic. The services

do not need to know each other at all, they just need to know that messages of a specific type exist with a certain

payload. There are various tools to support lightweight messaging, you can choose one of the following message

brokers that is delivering your messages to consumers running on individual microservices. The most popular protocol

for this type of communication is AMQP (Advanced Message Queuing Protocol), which is supported by many

operating systems and cloud providers. An asynchronous messaging system can be implemented as a one-to -one

(queue) or one-to -many (topic) mode. The most popular message brokers based on the AMQP protocol are RabbitMQ

and ApacheKafka.

 RabbitMQ: It is considered as a stable, open-source message broker application. RabbitMQ promotes the

usage of a protocol named as AMQP (Advanced messaging queuing protocol) as the wire level protocol or

network protocol for exchanging messages. It is a binary protocol that deals with the low-level details of

encoding and marshaling of message contents.

 Apache Kafka: Kafka is the most popular open source distributed publish-subscribe streaming platform that

can handle millions of messages per minute. Apache Kafka is a distributed streaming platform that was

initially conceived as a message queue. Kafka uses a binary TCP-based protocol that is optimized for the

efficiency and depend on a "message set" abstraction that eventually groups messages together to reduce the

overhead of the network round trip.

 For example, in a banking domain, loan request should be processed and needs approval at multiple levels. So, in this

case, when a user raises a request for the loan, then the loan request service will provide some reference number

instantly . Once all the approvals have been done, it will store the loan request details in the database. So, in this

situation, we can use asynchronous communication. The two properties of the asynchronous communication can be

described as follows:

A. Asynchronous One-to -One Communication Style

 In this communication approach, each request of a service client is processed by one instance of a service. There are

the following kinds of one-to -one interactions. Moreover, the message queues up if the receiving service is down &

proceeds later when they are up. This is particularly important from the perspective of loose coupling, multi -service

communication, and coping up with partial server failure.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 5, Issue 2, May 2021

Copyright to IJARSCT DOI: 10.48175/568 502
 www.ijarsct.co.in

 Impact Factor: 4.819

 Notification: It is considered as a one-way request. A client transmits a request to a service; however, a reply

is not expected/ sent.

 Async/Request Response: In this, the client transmits a request to service, which responds asynchronously.

The client does not block while waiting and is designed with th e belief that the response might not arrive for a

while.

Figure 5: Asynchronous one-to-one communication style

 As you can see in the following diagram, in one-to -one style, each service has only one instance and the services are

communicating through the message broker queue.

B. Asynchronous One-to -Many Communication Style

 In this communication approach, each request of a service client is administered by multiple service instances. The

client does not block while waiting for a response, and the response is not certainly sent immediately. The following

kinds of one-to -many interactions are as follows :

 Publish/subscribe: In this approach, a client publishes a notification message that is used by zero or multiple

interested services.

 Publish/async responses: In this approach, a client then publishes a request message and waits a certain

amount of time for responses to come from related services.

Figure 6: Asynchronous one-to-many communication style

 In the above following diagram, we can see that there are multiple instances of each service. Here, a client service
publishes a notification message as a topic and this topic is consumed by one or more instances of the interested
services.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 5, Issue 2, May 2021

Copyright to IJARSCT DOI: 10.48175/568 503
 www.ijarsct.co.in

 Impact Factor: 4.819

III. CONCLUSION

 Inter-service communication in microservices is essential for building a microservices-based application. Services

are independent and the only way which they can interact and formulate business functionality is through interservice

communication. In Microservices architecture style, communication between services will play an important role when

it comes to performance. In this paper, we compared synchronous and asynchronous inter-service methods with regards

to performance. So based on your requirement, you have to choose the right approach for inter-service communication.

Therefore, both synchronous and asynchronous type of communication patterns has to be adopted according to the

functional and non -functional requirements of the specific components. I hope this article was informative and would

be helpful and leaves you with a better understanding of interservice communication in Microservices.

REFERENCES

[1] https://www.dineshonjava.com/microservices-interservice-communication

[2] https://walkingtreetech.medium.com/inter-servicecommunication-in -microservices-c54f41678998

[3] https://www.researchgate.net/publication/346943854_Evaluating_the_Impact_of_Inter_Process_Communicati

on_in_Microservice_Architectures

[4] https://www.chakray.com/microservices-communication methods-types-and-styles/

[5] https://dzone.com/articles/communicating-betweenmicroservices

[6] https://docs.microsoft.com/enus/azure/architecture/microservices/design/

[7] https://softteco.com/blog/inter-service -communication -in microservices

[8] https://blog.devgenius.io/microservice-architecture communication-design-patterns-70b37beec294

