

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 1, August 2023

Advancements in Real Estate: Tokenization and Deep Learning Insights

Sania Ravindra Edlabadkar, Priti Bansilal Gopale, Mehul Jitendra Oswal Swapnil Adhik Jagtap, Dr. Arati R. Deshpande, Tushar Sugandhi

Department of Computer Engineering SCTR's Pune Institute of Computer Technology, Pune, India

Abstract: This survey covers three areas in real estate: to-kenization models, deep learning-based price prediction, and AI-based Know Your Customer(KYC) verification. The papers explore blockchain-based tokenization of real estate assets, high-lighting benefits like increased liquidity and fractional ownership. Deep learning techniques improve price prediction accuracy by analyzing patterns and using regression algorithms. AI-based KYC verification focuses on document analysis and identity recognition to automate processes and enhance accuracy. The survey emphasizes collaboration, advanced techniques, and the transformative potential of these areas in real estate.

Keywords: Tokenization, Real estate investments, Blockchain, Artificial intelligence (AI), Fractional ownership, Liquidity.

I. INTRODUCTION

The application of advanced computational techniques in thereal estate industry has gained significant attention in recent years. Two key areas of research focus within this domain are blockchain-based tokenization of real estate assets and deep learning-based models for real estate price prediction. These areas offer transformative potential by enhancing liquidity, market efficiency, and price forecasts.

Tokenization involves representing real-world assets as dig-ital tokens on a blockchain, enabling fractional ownership and streamlined transactions. Research explores legal frameworks, technical implementations, and benefits of tokenizing real estate assets, emphasizing increased liquidity, fractional own- ership, and global investor participation. However, challenges in regulatory compliance, scalability, and security need to be addressed.

Deep learning, machine learning, and regression algorithms are applied for real estate price prediction, improving fore- cast accuracy by analyzing intricate patterns and capturing nonlinear relationships. Studies highlight the significance of feature selection, model optimization, and algorithmic choice. They demonstrate the efficacy of these techniques in capturing complex patterns and enhancing prediction accuracy, providing valuable insights into factors influencing housing prices.

In AI-based KYC verification, the papers focus on documentanalysis, recognition, and identity verification. It discusses recent advancements in OCR, deep learning, and face recognition, highlighting their potential in automating document processing and improving identity verification accuracy.

Leveraging the potential of blockchain-based tokenization, deep learning-based models and AI-based KYC verification can unlock new avenues for growth and innovation in the real estate sector.

II. LITERATURE SURVEY

2.1 Tokenisation Models for Real Estate Investments

The concept of tokenization and its application in various industries, including real estate, has gained significant attention in recent years. Tokenization refers to the process of rep- resenting real-world assets as digital tokens on a blockchain, enabling fractional ownership, increased liquidity, and stream-lined transactions. In this context, several research papers have delved into the topic of blockchain-based tokenization of real estate assets. These papers explore different aspects of tokenization, ranging from legal and regulatory frameworks to technical implementations and potential benefits.

DOI: 10.48175/IJARSCT-12455

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.301 Volume 3, Issue 1, August 2023

"Blockchain tokenization of real estate investment: a secu- rity token offering procedure and legal design proposal" by Gurcan Avci & Yaman Omer Erzurumlu: In this paper, Avci and Erzurumlu provide a detailed procedure for conducting security token offerings (STOs) for real estate investments using blockchain technology. They propose a legal designframework to ensure compliance with regulations and outline the steps involved in the tokenization process. The authors discuss the advantages of tokenizing real estate assets, such asincreased liquidity, fractional ownership, and global investor participation. They also address the legal and regulatory con- siderations necessary for successful implementation of STOs in the real estate industry.

"Tokenized Securities and Commercial Real Estate" by Smith, Julie et al.: This paper explores the intersection of tokenization and commercial real estate. The authors discuss the potential benefits of tokenized securities in the real estate market, including increased liquidity, improved market efficiency, and enhanced access for investors. They analyze the challenges and opportunities associated with implementing tokenized securities in commercial real estate and discuss reg-ulatory considerations. The paper sheds light on the evolving landscape of tokenization in the context of commercial real estate and highlights potential future developments.

"Asset Tokenization of Real Estate in Europe Blockchains and the Token Economy" by Max Zheng and Philipp Sandner: Zheng and Sandner focus on the tokenization of real estate assets in Europe using blockchain technology. They examine the potential impact of asset tokenization on the real estate industry and discuss the benefits, such as increased liquidity, fractional ownership, and streamlined processes. The authors analyze the legal and regulatory landscape in Europe and provide insights into the challenges and opportunities of real estate tokenization. They also explore the role of blockchainin facilitating the token economy.

"General Concept of Real Estate Tokenization on Blockchain" by Konashevych, Oleksii: Konashevych presents a general concept of real estate tokenization using blockchain technology. The paper discusses the benefits of tokenization, including increased transparency, efficiency, and reduced re-liance on intermediaries. The author outlines the key compo- nents of the tokenization process and provides examples of blockchain platforms that can support real estate tokenization. The paper also highlights potential challenges and future prospects for implementing blockchain-based real estate to- kenization.

"Research on the tokenization of real estate assets based on blockchain technology" by C. Song, C. Sun, and W. Zeng: The tokenization of real estate assets utilising blockchain technology is examined in this article. The authors examine the possible advantages of tokenization, including improved market transparency, efficiency, and liquidity. They explore the potential and challenges of adopting this technology in the real estate sector as well as the technical facets of blockchain-based tokenization. The paper also examines potential applications and implications of real estate tokenization.

In summary, the literature survey on blockchain-based to- kenization of real estate assets demonstrates the promising potential for the industry. The research underscores the ad- vantages of improved liquidity, transparency, and accessibilitythrough fractionalization and trading on secondary markets. Nonetheless, there are challenges to overcome, including reg- ulatory clarity, scalability, and security. It is crucial for ongoing collaboration and research among academia, industry, and reg- ulators to fully unleash the transformative power of blockchain technology in revolutionizing the real estate market.

2.2 Deep Learning-Based Models for Real Estate Price Prediction

The literature survey comprises a collection of studies focused on the prediction of housing prices using advanced computational techniques. These studies explore the appli-cation of deep learning, machine learning, and regression algorithms in the domain of real estate. The research aims to enhance the accuracy of housing price forecasts by leveraging the capabilities of these models. By analyzing intricate patterns and capturing nonlinear relationships, these techniques offer valuable insights into the factors influencing housing prices. The studies emphasize the significance of feature selection, model optimization, and algorithmic choice to achieve re-liable predictions. and contribute to the understanding of the strengths and limitations of different computational ap- proaches.

One of the studies conducted by Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, and Kaiyang Wang in 2018 focused on housing price prediction using deep learning. They explored the application of deep learning models, specifically recurrent neural networks (RNNs) and long short-term memory (LSTM) networks, in capturing intricate patterns and

DOI: 10.48175/IJARSCT-12455

Copyright to IJARSCT www.ijarsct.co.in

338

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.301 Volume 3, Issue 1, August 2023

features from housing data. By utilizing these models, they demonstrated their effectiveness in accurately predicting housing prices. Theresearch highlighted the potential of deep learning techniques to improve the accuracy of housing price forecasts.

In another study by A. Varma, A. Sarma, S. Doshi, and R. Nair in 2018, the authors focused on house price prediction using machine learning and neural networks. They emphasized the advantages of machine learning algorithms, such as support vector machines (SVM) and neural networks, in capturing nonlinear relationships and improving prediction accuracy. By leveraging these algorithms, they demonstrated the potential to develop robust and reliable models for real estate price forecasting.

T. D. Phan conducted a study in 2018 that specifically investigated housing price prediction in the context of Melbourne City, Australia. The study highlighted the significance of feature selection and model optimization in achieving accurate predictions for a specific geographical area. By tailoring the models to the local market conditions and incorporating relevant features, their findings provided valuable insights into the factors influencing housing prices in that region.

Park, K. H., and Yoon, K. J. conducted a comparative studyof deep learning models for real estate price prediction in 2020. They explored various deep learning architectures, including convolutional neural networks (CNNs) and generative adversarial networks (GANs), and analyzed their performance. The study shed light on the importance of model selection and hyperparameter tuning in achieving accurate predictions. By comparing different deep learning approaches, the research provided insights into the strengths and limitations of these models in the real estate domain. In 2021, Dong, X., Li, S., Zhang, L., and Lu, Y. investi-gated the prediction of house prices using multiple regression and machine learning algorithms. The study emphasized the significance of feature engineering and algorithm selection in improving prediction accuracy. By incorporating a combination of features and leveraging diverse machine learning techniques, they demonstrated the potential to enhance the accuracy of housing price forecasts.

Thus, the literature survey underscores the importance of utilizing advanced computational techniques to forecast housing prices. The studies showcase the efficacy of deeplearning, machine learning, and regression algorithms in capturing intricate patterns and enhancing prediction accuracy. These insights offer valuable implications for researchers and professionals in the real estate sector who aim to developrobust and dependable models for housing price forecasting.

2.3 AI-Based KYC Verification in Real Estate

This comprehensive literature survey examines a selection of research papers that delve into the topics of document anal-ysis, recognition, and identity verification technologies. These papers provide valuable insights into recent advancements, methodologies, and applications in these fields. The studiescontribute to the ongoing research efforts aimed at improving the accuracy, efficiency, and automation of document processing, customer onboarding, and identity verification procedures. The first paper, "Document Analysis and Recognition – ICDAR 2021," focuses on the International Conference on Document Analysis and Recognition. Authored by Guillaume Chiron, Florian Arrestier, and Ahmad Montaser Awal, this publication serves as a comprehensive overview of the con-ference, shedding light on the latest research trends, techniques, and challenges in the field of document analysis and recognition. The paper provides a valuable resource for researchers and practitioners interested in staying updated on the advancements and innovations presented at ICDAR.

The second paper, titled "Artificial Intelligence-Based OCR," explores the application of artificial intelligence (AI) in optical character recognition (OCR). Authored by Bondarde, Ghadge, Saldanha, Markad, and Varpe, the paper discusses the recent advancements in OCR technology and the potential of AI algorithms to improve the accuracy and efficiency of document processing. The authors highlight the use of AI techniques such as deep learning, neural networks, and natural language processing in OCR systems. They demonstrate how these advancements can enhance the extraction and recognition of text from various documents, leading to more efficient data processing and analysis.

In the third paper, "Text Recognition for Vietnamese Identity Card Based on Deep Features Network," Van Hoai, Duong, and Hoang present a specialized approach for text recognition in Vietnamese identity cards. The authors address the challenges posed by the complex structure and font variations in these documents. They propose a deep features network-based method to accurately extract and recognize text from Vietnamese identity cards. The research showcases

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-12455

339

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.301 Volume 3, Issue 1, August 2023

the potential of deep learning techniques in handling specific document types and contributes to the advancement of identity verification processes and document management systems.

The fourth paper, "AI Based KYC - A Revolution in Customer Onboarding Process," authored by Swain and Mohapatra, explores the transformative impact of AI in customer onboarding procedures. The authors discuss the integration of AI techniques, including text extraction and face recognition, to automate the establishment and authentication of customer identities. By leveraging AI algorithms, organizations can streamline the KYC (Know Your Customer) process, reduce manual efforts, and improve the accuracy of identity verification. The paper highlights the advantages and potential of AI-based solutions in revolutionizing customer onboarding and enhancing the overall customer experience.

Lastly, the paper "AutoKYC: Automation of Identity Establishment and Authentication in KYC Process Using Text Extraction and Face Recognition" by Chaubey, Bhalerao, and Mangaonkar focuses on the automation of identity verification in the KYC process. The authors propose the AutoKYC system, which integrates text extraction and face recognition technologies to enhance the efficiency and accuracy of identity authentication. The system automates the extraction of rele- vant information from identity documents and utilizes face recognition algorithms to verify the identity of individuals. The research presents a comprehensive framework for imple- menting automated KYC processes, contributing to improved operational efficiency and reduced manual errors in identity verification procedures.

In conclusion, the reviewed papers provide a comprehensive view of recent advancements and applications in document analysis, recognition, and identity verification. These studies contribute to the ongoing research efforts aimed at improving the accuracy, efficiency, and automation of document process- ing, customer onboarding, and identity verification procedures. The integration of AI techniques, such as deep learning, neural networks, text extraction, and face recognition, holds tremendous potential in revolutionizing these processes. The findings from these studies have significant implications for various industries and sectors where document analysis and identity verification play a crucial role.

III. COMPARISON TABLE

Paper Autho	r Metho	od Used	Advantage	Limitations			
Blockchain Gurca	n AvciThe	authors	Provides a systematic proced	ure The specific technical			
tokenization &	Yamanpropo	se a	for con-ducting security to	kenimplementation de- tails of the			
of real estate	Omer securi	ty toker	offerings related to real est	ateblockchain infrastructure are not			
investment: Erzuru	ımlu offeri	ng (STO)	investments. Offers a legal	de-extensively discussed. The			
a security (2023)	[1] proce	dure and	sign framework to ens	ureproposed procedure and legal			
token offering	legal	design	compliance with regulations	anddesign may require further			
procedure	for	tokenizing	investor protection.	evaluation and refinement based			
and	real	estate		on regulatory changes or			
legal design	invest	ments on the		jurisdiction-specific			
proposal	blockchain.			considerations.			
Tokenized Secu-Smith,	Julie etThe	authors	Provides insights into	the The paper focuses on tokenized			
rities and Com-al.	explo	e tokenized	potential benefits of tokeni	zedsecurities			
mercial Real Es-(2019)	[2] securi	ties in the	securities in commercial i	ealin general and does not provide			
tate	conte	ct of	estate, such as increa	sedspecific details about the			
	comm	ercial real	liquidity, fractional ownersl	nip, implementation or legal design for			
	estate	discussing	and streamlined transaction	ons.real estate tokenization. The re-			
	the 1	penefits and	Discusses the challenges rela	tedsearch is from 2019, and the			
	challe	nges.	to regulations, market adopti	on,landscape of blockchain and real			
			and techno- logi	calestate tokenization may have			
			infrastructure.	evolved since then.			

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.301 Volume 3, Issue 1, August 2023

Asset Tokeniza-	Max Zheng	The authors	Provides an overview of the	The focus is on the European
tion of Real Es-	&	discuss asset	potential benefits of asset	market, and
tate in Europe	Philipp	tokenization in the	tokenization in the European real	the applicability of the findings
Blockchains and	Sandner (2022)	European real	estate sector, including increased	may vary in different jurisdictions.
the Token Econ-	[3]	estate market,	mar- ket efficiency, accessibility,	The paper discusses the potential
omy		exploring the role	and liquidity. Highlights the role	advantages without going into
			of the token economy in	
			facilitating new business models	-
			and in- vestment opportunities.	1
General Concept	Oleksii			The paper focuses on the general
of Real Estate			framework for tokenizing real	
Tokenization on	_	•		and does not provide specific
Blockchain	()[-]	_		technical or le- gal details for
210 0110111111		onthe blockchain.		implementation. The research is
			-	from 2020, and the practical
				implemen- tation and regulatory
			-	landscape may have evolved since
				then.
			creased liquidity and fractional	
			ownership.	
Research on	Song et al. [5]		_	Regulatory challenges:
			1 7	Tokenizing real estate assets may
the tokenization				
of real estate			-	face legal and regulatory hurdles
assets based			transferability of real estate	-
on blockchain		•	assets, potentially increasing	-
technology		technology.	1 2	Widespread adoption of
				blockchain-based real estate
				tokenization and scalability of the
			transparency and immutability to	
			_ ·	challenges.
			reducing fraud and enhancing	
D	G :11		security.	
Document Anal-		•	· ·	Common limitations associated
ysis and Recog-			_	with document analysis and
			_	recognition include: Complex
	ŕ	· ·	as: Automation: It enables the	
		requires access to	_	documents may have complex
				layouts, which can pose challenges
	Awal[6]	1 1		for accurate analysis andextraction
				of information.
				Handwritten or degraded text:
			_	Poor hand- writing or degraded
				text can be difficult to recognize
			and ma- chine learning models	•
			can achieve high lev- els of	
			_	Different languages may require
			-	specific techniques for accurate
			document-related tasks.	recognition.
				_

DOI: 10.48175/IJARSCT-12455

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.301 Volume 3, Issue 1, August 2023

Artificial	Bondarde et	Artificial Neural	OCR (Optical Character	Common limitations of AI-based
Intelligence-	al.	Network, Support	Recognition) techniques based	OCR techniques may include:
Based OCR.	[7]	Vector Regression,	on artificial intelligence can	Dependence on training data:
In: Tuba, M.,		XGBoost	offer several advantages, such	The performance of AI models
Akashe,			as: Improved accuracy: AI-based	heavily relies on the quality and
S.,			models can improve OCR	diversity of the training data.
Joshi, A. (eds)			accuracy by leveraging	Computational requirements:
ICT Systems			advanced algorithms and	Complex AI models may require
and			machine learningtechniques.	significant computational
Sustainability.			Scalability: These techniques can	resources for training and
			handle large volumes of	inference. Sensitivity to noise: AI
			documents efficiently, al- lowing	models can be sensitive to noise
			for high-speed processing.	or variations in the input data,
			Flexibility: AI-based OCR	affecting their accuracy.
			models can adapt and learn from	
			new data, making them more	
			flexible for different document	
			types.	
Text recognition	Van Hoai et	The authors	The advantages of this method	Generalization to other languages:
for Vietnamese	al.[8]	employed	may include: Language-specific	The model's effectiveness for
identity card		a deep	approach: The model is tailored	recognizing text in languages
based on deep				other than Vietnamese may not be
features network		for text	which can improve accuracy for	explicitly addressed.
		recognition on	text recognition tasks in this	Data availability and diversity:
		Vietnamese	context.	The avail- ability and diversity of
		identity cards.	Deep features network:	training data for the specific task
			Leveraging a deep learning-	can impact the model's
			based approach allows the	performance and generalization
			model to capture complex	capabilities.
			patterns and features, enhancing	
			recognition accuracy.	
			Specific application focus: The	
			paper focuses on text recognition	
			for Vietnamese identity cards,	
			addressing a specific use case.	
AI Based KYC	Mohapatra [9]	The paper	Efficiency: AI-based KYC	Data privacy: Handling sensitive
- A Revolution		proposesan AI-	systems can automate and	customer information in AI-based
in Customer On-		based Know Your	streamline the customer on-	KYC systems re- quires strong
boarding		Customer (KYC)	boarding process, reducing	data privacy and security
Process& Swain		solution for	manual effort and time.	measures. False positives and
				negatives: AI modelsmay generate
		onboarding	help in ac- curate identity	false positives or false negatives in
		processes.	verification and risk assessment.	identity verification, requiring on-
				going refinement.

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.301 Volume 3, Issue 1, August 2023

AutoKYC:	Chaubey et	he paper	Automation: The proposed	Data quality: The performance of
Automation	al		approach auto-	the model heavily relies on the
of Identity	101			quality and availability of data for
establishment				text extraction and face
and			Accuracy: By leveraging text	
authentication		_	extraction and face recognition	_
in KYC process		-	_	accuracy of face recognition can
using Text		•	9 1	be affected by variations in
extraction and		establishment and	-	lighting conditions, image quality,
face recognition		authentication in		and facial expressions.
lace recognition		the KYC (Know	addionioation.	and racial expressions.
		Your Customer)		
		process.		
Prediction on		1	Complex patterns: Deep	Data availability and quality:
Housing Price		1 1		Accurate predictions require a
Based on Deep		_	_	sufficient amount of high-quality
Learning		-		housing data for training the deep
g		1	improving pre-diction accuracy.	
				Interpretability: Deep learning
			-	models are often considered black
			C	boxes, making it challenging to
			features from the input data,	
			reducing the need for manual	1
			~	predictions.
House Price	Varma et al.)	Data availability: Sufficient and
			, ,	diverse housing data is required
Using Machine			*	for training accurate machine
Learning and		_	_	learning models.
Neural		•	-	Overfitting: Without proper
Networks		_		regularization techniques, machine
rectworks				learning models, in- cluding
			-	neural networks, can overfit the
		•		training data, leading to reduced
		prediction.	<u> </u>	generalization performance.
Housing Price	Phan [13]	The paper applies		Data quality and quantity:
Prediction			The use of different machine	1 2 1 2
Using		_	learning algorithms allows for	1 1
Machine		for predicting	8 8	housing attributes and
Learning		1 0	performance in housing price	S.
Algorithms:				Generalizability: Models trained
The Case of			•	on data from a specific city may
Melbourne City,			1	not generalize well to other
Australia				locations due to variations in real
1 rustrana			• •	estate markets.
			area.	estate markets.

344

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.301 Volume 3, Issue 1, August 2023

A comparative	Park &	k Yo	oon The	Ţ	paper	Efficiency	7: A	I-based	1 KY	CData	privacy:	Hand	dling	sensitive
study of deep	[14]		con	pares	differen	systems	can	autom	ate an	dcusto	mer infor	matic	n in	AI-based
learning models				(leep	streamline	e the	custo	mer o	ı-KYC	systems	re-	quire	s strong
for real estate	;		lear	ning 1	nodels for	boarding	pro	cess,	reducin	gdata	privac	y a	and	security
price prediction			real	esta	ate price	manual ef	fort an	d time.		meas	ures.			
			pre	lictior	1.	Accuracy	: AI	algorit	hms ca	nFalse	positives	s and	nega	tives: AI
						help in	ac-	curate	identi	ymode	ls may	ge	enerat	e false
						verificatio	n and	risk ass	essment	positi	ves or	false	nega	atives in
										identi	ity verific	ation	, requ	iring on-
										going	refineme	ent.		
Predicting	Dong	et	al.The	Ţ	paper	Flexibility	/: Ma	achine	learnin	gData	quality	and	l ava	ailability:
house	[15]		use	;	multiple	algorithm	S			Accu	rate and	suffi	icient	housing
price based			regi	ession	n and	can hand	le a	variety	of inp	ıtdata	with rel	levant	feat	tures are
on			mad	hine	learning	features a	and ac	lapt to	differen	ntrequi	red for	train	ning	effective
multipl			algo	rithm	s for	data patte	rns.			mode	els.			
e regression and			hou	se p	orice	Feature	impor	tance:	Machir	eMode	el selectio	n: Th	e cho	ice of the
machine			pre	lictior	١.	learning a	al-orith	nms car	n provid	lemach	ine learn	ing a	lgorit	hm may
learning						insights i	nto th	e impo	rtance o	ofaffect	t the pred	lictior	n accu	racy and
algorithms						different	featur	es in j	predictin	ggener	alization	capab	oility.	
						house prio	ces.							

IV. CONCLUSION

The review of literature emphasized the progress and possi- bilities of tokenization in real estate investment, deep learning models for predicting real estate prices, AI-based KYC verifi- cation in the real estate industry, and machine learning models for real estate price prediction.

The studies emphasize the advantages of AI in automating and enhancing the efficiency of identity verification, risk assessment, and compliance checks in real estate transactions. AI-based KYC systems leverage machine learning algorithms to analyze and authenticate documents, detect fraudulent ac- tivities, and ensure regulatory compliance.

literature review on deep learning-based models emphasizes on the advantages of deep learning in capturing complex relationships and non-linearities in real estate data, improving prediction accuracy compared to traditional methods. These models utilize deep learning techniques to analyze large vol- umes of data and extract meaningful patterns and features for accurate price predictions. However, the literature review also identifies certain limitations, such as the need to address interpretability issues and challenges related to data quality and scalability.

Nonetheless, the studies also identified various constraints and areas that require attention, including the necessity to han- dle regulatory compliance, interpretability of AI models, data quality concerns, and adaptability to different jurisdictions. Fu- ture research should concentrate on tackling these challenges to ensure the successful application of these technologies in the real estate sector

V. DECLARATIONS

A. Ethical Approval

Not Applicable.

B. Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

C. Authors' contributions

All authors contributed to the research. Sania Ravindra Edlabadkar and Priti Bansilal Gopale played equal roles in writing the main manuscript text. Mehul Jitendra Oswal and Swapnil Adhik Jagtap helped in analyzing the results presented in the manuscript. Arati Deshpande and Tushar Sugandhi provided guidance and supervision during the

presented in the manuscript. Arati Deshpande and Tushar Sugandhi provided guidance and supervision durin

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12455

www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.301 Volume 3, Issue 1, August 2023

implementation as well as the writing process of the manuscript. All authors reviewed and approved the final version of the manuscript for submission.

D. Funding

The authors received no funding for the work they submitted.

REFERENCES

- [1] Gurcan Avci & Yaman Omer Erzurumlu (2023) Blockchain tokenization of real estate investment: a security token offering procedure and legal design proposal, Journal of Property Research, 40:2, 188-207, DOI: 10.1080/09599916.2023.2167665
- [2] Smith, Julie and Vora, Manasi and Benedetti, Hugo E and Yoshida, Kenta and Vogel, Zev, Tokenized Securities and Commercial Real Estate (May 14, 2019). Available at SSRN: https://ssrn.com/abstract=3438286 or http://dx.doi.org/10.2139/ssrn.3438286
- [3] Asset Tokenization of Real Estate in Europe Blockchains and the Token Economy, 2022 Max Zheng, Philipp Sandner
- [4] Konashevych, Oleksii. (2020). General Concept of Real Estate Tokeniza- tion on Blockchain. 10.13140/RG.2.2.33435.62244.
- [5] C. Song, C. Sun, and W. Zeng, "Research on the tokenization of real estate assets based on blockchain technology," in 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi'an, China, 2018, pp. 1581-1586. doi: 10.1109/IMCEC.2018.8462897
- [6] Document Analysis and Recognition ICDAR 2021, 2021, Volume 12824 ISBN: 978-3-030-86336-4 Guillaume Chiron, Florian Arrestier, Ahmad Montaser Awal
- [7] Bondarde, S., Ghadge, P., Saldanha, A., Markad, A., Varpe, D. (2023). Artificial Intelligence-Based OCR. In: Tuba, M., Akashe, S., Joshi, A. (eds) ICT Systems and Sustainability. Lecture Notes in Networks and Systems, vol 516. Springer, Singapore. https://doi.org/10.1007/978-981-19-5221-033
- [8] Van Hoai, D.P., Duong, HT. & Hoang, V.T. Text recognition for Vietnamese identity card based on deep features network. IJDAR 24, 123–131 (2021). https://doi.org/10.1007/s10032-021-00363-7
- [9] Swain, A. K., & Mohapatra, P. K. (2019). AI Based KYC A Revolution in Customer Onboarding Process. International Journal of Innovative Technology and Exploring Engineering, 8(12), 294-297.
- [10] S. Chaubey, S. Bhalerao and N. Mangaonkar, "AutoKYC: Automation of Identity establishment and authentication in KYC process using Text extraction and face recognition," 2022 2nd Asian Conference on Innovation in Technology (ASIANCON), Ravet, India, 2022, pp. 1-6, doi: 10.1109/ASIANCON55314.2022.9909442.
- [11] Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, & Kaiyang Wang. (2018). Prediction on Housing Price Based on Deep Learning. International Journal of Information, Control and Computer Sciences, 11.0(2). https://doi.org/10.5281/zenodo.1315879
- [12] A. Varma, A. Sarma, S. Doshi and R. Nair, "House Price Prediction Using Machine Learning and Neural Networks," 2018 Second Inter- national Conference on Inventive Communication and Computational Technologies (ICICCT), Coimbatore, India, 2018, pp. 1936-1939, doi: 10.1109/ICICCT.2018.8473231.
- [13] T. D. Phan, "Housing Price Prediction Using Machine Learning Algo- rithms: The Case of Melbourne City, Australia," 2018 International Con- ference on Machine Learning and Data Engineering (iCMLDE), Sydney, NSW, Australia, 2018, pp. 35-42, doi: 10.1109/iCMLDE.2018.00017.
- [14] Park, K. H., & Yoon, K. J. (2020). A comparative study of deep learning models for real estate price prediction. Sustainability, 12(15), 6053.
- [15] Dong, X., Li, S., Zhang, L., & Lu, Y. (2021). Predicting house pricebased on multiple regression and machine learning algorithms. Journal of Physics: Conference Series, 1865(1), 012083

