IJARSCT

Observations on Homogeneous Bi-Quadratic Equation with Five Unknowns

$\left(x^{4}-y^{4}\right)+2(x-y)\left(x^{3}+y^{3}\right)=36\left(z^{2}-w^{2}\right) p^{2}$
J. Shanthi ${ }^{1}$ and M. A. Gopalan ${ }^{2}$
Assistant Professor, Department of Mathematics ${ }^{1}$
Professor, Department of Mathematics
Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India
Affiliated to Bharathidasan University, Trichy,Tamil Nadu,India
shanthivishvaa@gmail.com ${ }^{1}$ and mayilgopalan@gmail.com ${ }^{2}$

Abstract

In this paper, we present non-zero integer solutions to homogeneous quinary bi- quadratic equation $\left(x^{4}-y^{4}\right)+2(x-y)\left(x^{3}+y^{3}\right)=36\left(z^{2}-w^{2}\right) p^{2}$

Keywords: homogeneous bi-quadratic ,quinary bi-quadratic, integer solutions

I. INTRODUCTION

It is worth to observe that higher degree Diophantine equations with multiple variables are rich in variety. In this context, one may refer [1-31] for various problems on biquadratic equations with three ,four and five variables. . While attempting to collect homogeneous bi-quadratic Diophantine equations with five unknowns ,the authors came across the paper [32] represented by
"Observations On Homogeneous Bi-quadratic Equation with five unknowns $(x-y)+2(x-y)\left(x^{3}+y^{3}\right)=36\left(z^{2}-w^{2}\right) \mathrm{p}^{2}$ ". In the above paper ,the authors have presented a few choices of integer solutions. Albeit tacitly , there are other choices of integer solutions to the considered equation which is the main aim of this paper.

1.1 Method of Analysis

The homogeneous bi-quadratic diophantine equation with five unknowns under consideration is

$$
\begin{equation*}
\left(x^{4}-y^{4}\right)+2(x-y)\left(x^{3}+y^{3}\right)=36\left(z^{2}-w^{2}\right) p^{2} \tag{1}
\end{equation*}
$$

Introduction of the linear transformations

$$
\begin{equation*}
x=6(u+2 v), y=6(u-2 v), z=6(u v+2), w=6(u v-2), p=2 q \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
u^{2}+8 v^{2}=q^{2} \tag{3}
\end{equation*}
$$

which can be solved through different methods. In view of (2), different sets of integer solutions to (1) are obtained.
Set 1:
It is observed that (3) is satisfied by

$$
\mathrm{v}=2 \mathrm{rs}, \mathrm{u}=8 \mathrm{r}^{2}-\mathrm{s}^{2}, \mathrm{q}=8 \mathrm{r}^{2}+\mathrm{s}^{2}
$$

In view of (2), the integer solutions to (1) are given by
$x=6\left(8 r^{2}-s^{2}+4 r s\right), y=6\left(8 r^{2}-s^{2}-4 r s\right)$,
$\mathrm{z}=6\left[2 \mathrm{rs}\left(8 \mathrm{r}^{2}-\mathrm{s}^{2}\right)+2\right], \mathrm{w}=6\left[2 \mathrm{rs}\left(8 \mathrm{r}^{2}-\mathrm{s}^{2}\right)-2\right], \mathrm{p}=2\left(8 \mathrm{r}^{2}+\mathrm{s}^{2}\right)$
Set 2:

Express (3) as the system of double equations as below in Table 1:
Table 1-System of double equations

System	I	II	III	IV	V
$\mathrm{q}+\mathrm{u}$	v^{2}	$2 \mathrm{v}^{2}$	$4 \mathrm{v}^{2}$	8 v	4 v
$\mathrm{q}-\mathrm{u}$	8	4	2	v	2 v

Solving each of the above system of equations ,the values of $\mathrm{U}, \mathrm{V}, \mathrm{q}$ are obtained.In view of (2) ,the corresponding integer solutions are obtained. For simplicity ,the solutions are exhibited below:

Solutions from System I :

$$
\begin{aligned}
& x=6\left(2 s^{2}+4 s-4\right), y=6\left(2 s^{2}-4 s-4\right) \\
& z=6\left(2 s\left(2 s^{2}-4\right)+2\right), w=6\left(2 s\left(2 s^{2}-4\right)-2\right), p=2\left(2 s^{2}+4\right)
\end{aligned}
$$

Solutions from System II :

$$
\begin{aligned}
& \mathrm{x}=6\left(\mathrm{~s}^{2}+2 \mathrm{~s}-2\right), \mathrm{y}=6\left(\mathrm{~s}^{2}-2 \mathrm{~s}-2\right) \\
& \mathrm{z}=6\left(\mathrm{~s}\left(\mathrm{~s}^{2}-2\right)+2\right), \mathrm{w}=6\left(\mathrm{~s}\left(\mathrm{~s}^{2}-2\right)-2\right), \mathrm{p}=2\left(\mathrm{~s}^{2}+2\right)
\end{aligned}
$$

Solutions from System III :

$$
\begin{aligned}
& \mathrm{x}=6\left(2 \mathrm{~s}^{2}+2 \mathrm{~s}-1\right), \mathrm{y}=6\left(2 \mathrm{~s}^{2}-2 \mathrm{~s}-1\right) \\
& \mathrm{z}=6\left(\mathrm{~s}\left(2 \mathrm{~s}^{2}-1\right)+2\right), \mathrm{w}=6\left(\mathrm{~s}\left(2 \mathrm{~s}^{2}-1\right)-2\right), \mathrm{p}=2\left(2 \mathrm{~s}^{2}+1\right)
\end{aligned}
$$

Solutions from System IV :

$$
\begin{aligned}
& x=66 s, y=18 s \\
& z=6\left(14 s^{2}+2\right), w=6\left(14 s^{2}-2\right), p=18 s
\end{aligned}
$$

Solutions from System V :

$$
\begin{aligned}
& x=18 s, y=-6 s, \\
& z=6\left(s^{2}+2\right), w=6\left(s^{2}-2\right), p=6 s
\end{aligned}
$$

Set 3:
Write (3) as

$$
\begin{equation*}
u^{2}+8 v^{2}=q^{2} * 1 \tag{4}
\end{equation*}
$$

Assume

$$
\begin{equation*}
q=a^{2}+8 b^{2} \tag{5}
\end{equation*}
$$

Write integer 1 on the R.H.S. of (4) as

$$
\begin{equation*}
1=\frac{(1+i \sqrt{8})(1-i \sqrt{8})}{9} \tag{6}
\end{equation*}
$$

Using (5) and (6) in (3) and employing the method of factorization, define

$$
(u+i \sqrt{8} v)=\frac{1}{3}(1+i \sqrt{8})(a+i \sqrt{8 b})^{2}
$$

On equating real and imaginary parts in the above equation and replacing a by $3 \mathrm{~A} \& \mathrm{~b}$ by 3 B , we get

IJARSCT

$$
\begin{aligned}
& u=3\left(A^{2}-8 B^{2}-16 A B\right) \\
& v=3\left(A^{2}-8 B^{2}+2 A B\right) \\
& q=9\left(A^{2}+8 B^{2}\right)
\end{aligned}
$$

In view of (2), the non-zero distinct integer solutions of (1) are obtained as

$$
\begin{aligned}
& x=18\left(3 A^{2}-24 B^{2}-12 A B\right), y=18\left(-A^{2}+8 B^{2}-20 A B\right), \\
& z=54\left[\left(A^{2}-8 B^{2}\right)^{2}-14 A B\left(A^{2}-8 B^{2}\right)-32 A^{2} B^{2}\right]+12, \\
& w=54\left[\left(A^{2}-8 B^{2}\right)^{2}-14 A B\left(A^{2}-8 B^{2}\right)-32 A^{2} B^{2}\right]+12, \\
& p=18\left(A^{2}+8 B^{2}\right)
\end{aligned}
$$

Note 1 :
Apart from (6) ,the integer 1 on the R.H.S. of (4) is also expressed as the product of complex conjugates as below:

$$
\begin{aligned}
& 1=\frac{(7+i 2 \sqrt{8})(7-i 2 \sqrt{8})}{81}, 1=\frac{(7+i 3 \sqrt{8})(7-i 3 \sqrt{8})}{121}, \\
& 1=\frac{(1+i 6 \sqrt{8})(1-i 6 \sqrt{8})}{289}
\end{aligned}
$$

The repetition of the above process leads to three more sets of integer solutions to (1).
Set 4 :
Rewrite (3) as

$$
\begin{equation*}
q^{2}-8 v^{2}=u^{2} * 1 \tag{7}
\end{equation*}
$$

Write the integer 1 on the R.H.S. of (7) as

$$
\begin{equation*}
1=(3+\sqrt{8})(3-\sqrt{8}) \tag{8}
\end{equation*}
$$

Assume

$$
\begin{equation*}
u=a^{2}-8 b^{2}=(a+\sqrt{8 b})(a-\sqrt{8 b}) \tag{9}
\end{equation*}
$$

Using (8) and (9) in (7) and using the method of factorization, define

$$
q+\sqrt{8} v=(a+\sqrt{8 b})^{2}(3+\sqrt{8})
$$

Equating the coefficients of rational and irrational parts in (9), we get

$$
\begin{equation*}
q=3\left(a^{2}+8 b^{2}\right)+16 a b, v=\left(a^{2}+8 b^{2}\right)+6 a b \tag{10}
\end{equation*}
$$

Substituting the values of $\mathbf{u}, \mathrm{v}, \mathrm{q}$ from (9) and (10) in (2), the non-zero
distinct integral solutions of (1) are obtained as

$$
\begin{aligned}
& x=6\left(3 a^{2}+8 b^{2}+12 a b\right) \\
& y=6\left(-a^{2}-24 b^{2}-12 a b\right) \\
& z=6\left[a^{4}-64 b^{4}+6 a b\left(a^{2}-8 b^{2}\right)+2\right] \\
& w=6\left[a^{4}-64 b^{4}+6 a b\left(a^{2}-8 b^{2}\right)-2\right] \\
& p=6\left(a^{2}+8 b^{2}\right)+32 a b
\end{aligned}
$$

Note 2 :

It is worth to mention here that in (7), the integer 1 on the R.H.S. of (7) may also represented as follows

$$
1=\frac{\left(2 \mathrm{~s}^{2}+1+\sqrt{8} \mathrm{~s}\right)\left(2 \mathrm{~s}^{2}+1-\sqrt{8 \mathrm{~s}}\right)}{\left(2 \mathrm{~s}^{2}-1\right)^{2}}
$$

Following the analysis as that of Set 4 , one may obtain different set of integer solutions to (1) .

II. CONCLUSION

As the bi-quadratic equations are rich in variety , one may search for integer solutions to other choices of homogeneous or non-homogeneous bi-quadratic equations with multi-variables.

REFERENCES

[1]. M.A. Gopalan, V. Pandichelvi On the Solutions of the Biquadratic equation $\left(x^{2}-y^{2}\right)^{2}=\left(z^{2}-1\right)^{2}+w^{4}$ paper presented in the international conference on Mathematical Methods and Computation, Jamal Mohammed College, Tiruchirappalli, July 24-25, 2009.
[2]. M.A. Gopalan, P. Shanmuganandham, On the biquadratic equation $x^{4}+y^{4}+z^{4}=2 w^{4}$, Impact J.Sci tech;.4(4), (2010). 111-115.
[3]. M.A. Gopalan, G. Sangeetha, Integral solutions of Non-homogeneous Quadratic equation $x^{4}-y^{4}=\left(2 \alpha^{2}+2 \alpha+1\right)\left(z^{2}-w^{2}\right)$, Impact J.Sci Tech; 4(3), (2010). 15-21.
[4]. M.A. Gopalan, R. Padma, Integral solution of Non-homogeneous Quadratic equation $x^{4}-y^{4}=z^{2}-w^{2}$, Antarctica J. Math., 7(4), 2010, 371-377.
[5] M.A. Gopalan, P. Shanmuganandham, On the Biquadratic Equation $x^{4}+y^{4}+(x+y) z^{3}=2\left(k^{2}+3\right)^{2 n} w^{4}$, Bessel J. Math., 2(2), (2012), 87-91.
[6]. M.A. Gopalan, S. Vidhyalakshmi, K. Lakshmi, On the bi-quadratic equation with four unknowns $x^{2}+x y+y^{2}=\left(z^{2}+z w+w^{2}\right)^{2}$, IJPAMS, 5 (1), (2012) , 73-77.
[7]. M.A. Gopalan, B. Sivakami, Integral solutions of Quadratic equation with four unknowns $x^{3}+y^{3}+z^{3}=3 x y z+2(x+y) w^{3}$, Antartica J. Math., 10 (2), , 2013, 151-159.
[8]. M.A. Gopalan, S. Vidhyalakshmi, A. Kavitha, Integral solutions to the bi-quadratic equation with four unknowns $(x+y+z+w)^{2}=x y z w+1$, IOSR.7(4), (2013). 11-13.
[9]. K. Meena, S. Vidhyalakshmi, M.A. Gopalan, S. Aarthy Thangam, On the bi-quadratic equation with four unknowns $x^{3}+y^{3}=39 z w^{3}$, International Journal of Engineering Research Online, 2(1), 2014. 57-60.
[10]. M.A. Gopalan, V. Sangeetha, Manju Somanath, Integer solutions of non-homogeneous biquadratic equation with four unknowns $4\left(x^{3}-y^{3}\right)=31\left(k^{2}+3 s^{2}\right) z w^{2}$, Jamal Academic Research Journal, Special Issue, , (2015), 296-299.

IJARSCT

Volume 3, Issue 2, July 2023

[11]. A.Vijayasankar, Sharadha Kumar, M.A.Gopalan, "On the Non-Homogeneous Bi-Quadratic Equation with Four Unknowns $8 \mathrm{xy}+5 \mathrm{z}^{2}=5 \mathrm{w}^{4} "$, Jouranl of Xi'an University of architecture \& Technology, 12(2),(2020), 1108-1115.
[12]. S. Vidhyalakshmi, T. Mahalakshmi, M.A. Gopalan, A Search for Integral solutions to the Ternary BiQuadratic Equation $x^{4}+x^{3} y+x^{2} y^{2}+x y^{3}+y^{4}=(x+y)^{2}+1+z^{2}$, Turkish Journal of Computer and Mathematics Education, 12 (7), (2021), 484-495.
[13]. S.Vidhyalakshmi, M.A.Gopalan, On Finding integer solutions to Non-Homogeneous Ternary Bi-Quadratic Equation $3\left(x^{2}+y^{2}\right)-2 x y=11 z^{4}$, International journal of Novel Research in Physics, Chemistry and Mathematics, 9 (2), (2022), 23-28.
[14]. S. Vidhyalakshmi, M.A. Gopalan, On the Non-Homogeneous Ternary Bi-Quadratic $x z(x+z)=2 y^{4}$, International Research Publication and Reviews, 3, (2022), 3465-3469
[15]. S.Vidhyalakshmi, M.A. Gopalan, On the Non-Homogeneous Ternary Bi-Quadratic equation $8 x z(x+z)=15 y^{4}$, International Research Journal of Moderization in Engineering Technology and Science (IRJMETS), 04 (07), (2022), 3623-3625
[16]. S. Vidhyalakshmi, M.A. Gopalan, On the Non-Homogeneous Ternary Bi-Quadratic equation $x z(x-z)=y^{4}$, International Research Journal of Education and Technology, 04 (07), (2022), 232-237.
[17]. S. Vidhyalakshmi, M.A. Gopalan, On Non-Homogeneous Ternary Bi-Quadratic Equation $11(x+y)^{2}=4\left(x y+11 z^{4}\right)$, Journal of Multidisciplinary Engineering Science and Research (JMESR), 1 (1), (2022), 8-10.
[18]. S. Vidhyalakshmi, M.A. Gopalan, On finding integer solutions to Non-Homogeneous Ternary BiQuadratic equation $x^{2}+3 y^{2}=31 z^{4}$, International Journal of Multidisciplinary Research and Growth Evaluation, 03 (04), (2022), 319-327.
[19]. S. Vidhyalakshmi, M.A. Gopalan, On Non-Homogeneous Ternary Bi-Quadratic Equation $4 x z(x+z)=5 y^{4}$, International Journal of Research Publication and Reviews, 03 (08), (2022), 443-447.
[20]. S. Vidhyalakshmi, M.A. Gopalan, On Non-Homogeneous Ternary Bi-Quadratic Equation $5\left(x^{2}-y^{2}\right)+2(x+y)=12 z^{4}$, International Research Journal of Moderlization in Engineering Technology and Science, 04(08), (2022), 425-429.
[21]. S. Vidhyalakshmi, M.A. Gopalan, On Non-Homogeneous Ternary Bi-Quadratic Equation $2 x z(x-z)=y^{4}$, International Journal of Research publication and Rewiews, 08 (08), (2022), 187-192.

IJARSCT
[22]. S. Vidhyalakshmi, M.A. Gopalan, On finding integer solution to Non-Homogeneous Ternary Bi-Quadratic equation $5\left(x^{2}+y^{2}\right)-2 x y=140 z^{4}$, International Journal of Engineering Inventions, 11 (08), (2022), 01-04.
[23]. S. Mallika, S. Vidhyalakshmi, M.A. Gopalan, On finding integer solution to Non-Homogeneous Ternary Bi-Quadratic equation $2\left(x^{2}+y^{2}\right)-x y=57 z^{4}$, International Research Journal of Education and Technology (IRJET), 05 (01), (2022), 63-72.
[24]. S. Vidhyalakshmi, T. Mahalakshmi, M.A. Gopalan, Observations On Non-homogeneous Bi-quadratic with Four unknowns $10 x y+7 z^{2}=7 w^{4}$, Science, Technology and Development Journal, IX (III), (2020), 1418.
[25]. S. Vidhyalakshmi, T. Mahalakshmi, B. Loganayagi, M.A. Gopalan, The Non-homogeneous Biquadratic Equation with Four Unknowns $x y(x+y)+30 z w^{3}=0$, Stochastic Modeling \& Applications, 25, 3, Special Issue 4, Part-3, (2021), 1992-1998.
[26]. S. Mallika, V. Praba, T. Mahalakshmi, Observations On Homogeneous Bi-Quadratic Equation with Five unknowns $x^{4}-y^{4}=26\left(z^{2}-w^{2}\right) T^{2}$ Alochana Chakra Journal, IX (V), (2020), 4421-4431.
[27]. S. Vidhyalakshmi, J. Shanthi, M.A. Gopalan, Observation on the Non-Homogeneous Biquadratic Equation with five unknowns $\left(\mathrm{x}^{4}-\mathrm{y}^{4}\right)=10\left(\mathrm{z}^{+} \mathrm{w}\right) \mathrm{p}^{2}$, Vidyabharati International Interdisciplinary Research Journal, Special Issue on Recent Research Trends in Management, Science and Technology, (2021), 1048-1053.
[28]. S.Vidhyalakshmi, M.A.Gopalan, On Homogeneous Bi-Quadratic Diophantine Equations with Five Unknowns $x^{4}-y^{4}=5^{2 n}\left(z^{2}-w^{2}\right) T^{2}$, International Journal of Engineering Inventions, 11(3), (2022), 293-298.
[29]. S. Vidhyalakshmi, M.A. Gopalan, On Homogeneous Bi-Quadratic Diophantine Equation with five unknowns $2(\mathrm{x}-\mathrm{y})\left(\mathrm{x}^{3}+\mathrm{y}^{3}\right)=4^{2 \mathrm{n}}\left(\mathrm{z}^{2}-\mathrm{w}^{2}\right) \mathrm{T}^{2}$, International Journal of Advanced Multidisciplinary Research and Studies, 2(4), (2022), 452-456.
[30]. S. Vidhyalakshmi, M.A. Gopalan, Observation On Homogeneous Bi-Quadratic with four unknowns $10 x y+9 z^{2}=9 w^{4}$, Journal of Research in Multidisciplinary methods and applications, 01 (05), (2022), 01220105002-1,0122015002-5.
[31]. S. Vidhyalakshmi, M.A. Gopalan, On finding general form of Integral solution to the Quinary Homogeneous Bi Quadratic equation $(x+y)\left(x^{3}+y^{3}\right)=\alpha\left(z^{2}-w^{2}\right) \rho^{2}$, International journal of Research publication and Reviews, 03 (09), (2022), 1360-1363.
[32].
S.Mallika ,M.A.Gopalan ,Observations on Homogeneous Bi-quadratic Equation with Five Unknowns $\left(x^{4}-y^{4}\right)+2(x-y)\left(x^{3}+y^{3}\right)=36\left(z^{2}-w^{2}\right) p^{2}$, IJRPR ,4(3) ,4239-4246, 2023

