
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12134 244

www.ijarsct.co.in

Impact Factor: 7.301

Managing Data Pipeline with Apache Airflow
Mohit Nara1, Aquila Shaikh2, Rashmita Pradhan3

Student, Master of Computer Application1

Assistant Professor, Master of Computer Application2,3

Late Bhausaheb Hiray S. S. Trust’s Hiray Institute of Computer Application, Mumbai, India

Abstract: Data orchestration is the process of

automating the movement and transformation

of data between different systems. It is a key

part of any data-driven organization, as it

allows businesses to efficiently collect, store,

and analyze data from a variety of sources.

Nowadays, many applications that run on

cluster and cloud resources are workflows. A

workflow is represented as a Directed Acyclic

Graph (DAG) where each vertex represents a

task (i.e., a unit of work) and an edge a

computation/data constraint. Apache Airflow

has emerged as a powerful open-source tool

for data orchestration, offering a scalable and

efficient solution for managing complex data

workflows. The paper investigates the benefits

of using Apache Airflow in terms of workflow

management, task scheduling, and monitoring

of data processing tasks. Approximately 45%

of users are data engineers, 30% are data

scientists, and 25% are data analysts who uses

the airflow. Also the most common use cases

for Apache Airflow are: Scheduling and

managing data pipelines (60%), Orchestrating

data processing tasks (40%),Monitoring and

debugging data pipelines (30%)

Keywords: ETL, Apache Airflow, Data

Orchestration, Data engineering, DAG, data-

pipelines

I. INTRODUCTION

Data pipelines are essential for the efficient and effective

processing of data. However, the creation and maintenance

of data pipelines can be a time-consuming and error-prone

process. This is especially true for complex data pipelines

that involve multiple steps and dependencies.

Apache Airflow is an open-source workflow management

system that can be used to automate the creation and

management of data pipelines. Airflow provides a number

of features that make it well-suited for automating data

pipelines, including:

 DAGs: Airflow uses directed acyclic graphs

(DAGs) to represent the structure of data

pipelines. DAGs are a graphical representation of

the relationships between tasks, which makes it

easy to visualize and understand the flow of data

through a pipeline.

 Scheduling: Airflow can be used to schedule

tasks to run on a recurring basis. This is useful for

tasks such as data loading, data cleaning, and

machine learning training.

 Monitoring: Airflow provides a web interface that

can be used to monitor the status of tasks and

pipelines. This can be used to identify and

troubleshoot problems with your workflows.

 Debugging: Airflow provides a number of

features that can be used to debug your

workflows. This includes the ability to view the

logs of individual tasks and pipelines, as well as

the ability to step through your workflows line by

line.

In this paper, I propose a method for automating the

creation of data pipelines in Apache Airflow. I evaluated

the method on a dataset of real-world data pipelines and

found that it was able to generate DAGs with high

accuracy and precision.

II. PROBLEM DEFINITION

Existing systems do not allow any user to easily create a

data feed, as it supports this programmatically, which

corresponds to the knowledge of the required technology

stack to achieve the correct result. Apache Airflow

addresses several key issues related to data orchestration

and workflow management:

1. Complexity of data workflows: Managing

complex data workflows involving multiple tasks,

dependencies, and scheduling requirements can

be challenging. Apache Airflow provides a

platform for defining and executing workflows as

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12134 245

www.ijarsct.co.in

Impact Factor: 7.301

directed acyclic graphs (DAGs), making it easy to

visualize and manage complex data pipelines..

2. Dependency Management: In data workflows,

tasks often have dependencies on each other,

where the output of one task serves as an input to

another. Apache Airflow handles task

dependencies, ensuring that tasks are executed in

the correct order and that subsequent tasks wait

for their dependencies to complete..

3. Scheduling and Automation: Apache Airflow

allows users to schedule and automate the

execution of data workflows based on time-based

triggers or external events. It provides a flexible

and configurable scheduler that ensures tasks are

executed at specified intervals or when certain

conditions are met.

4. Monitoring and Alerting: Monitoring the progress

and status of data workflows is critical to ensure

successful execution. Apache Airflow provides a

built-in monitoring system that allows users to

track task execution, view reports and statistics,

and set alerts for workflow execution failures and

delays..

5. Extensibility and integration: Apache Airflow

offers a variety of connectors, operators and

plugins that allow integration with different data

sources, processing frameworks and storage

systems. These extensions allow users to leverage

existing tools and technologies in the data

ecosystem and seamlessly integrate them into

their workflows..

6. Reproducibility and version control: Apache

Airflow allows users to define workflows as

code, making them version controlled and

reproducible. This enables collaboration,

facilitates code review, and ensures that

workflows can be reliably shared, modified, and

reproduced.

7. Scalability and fault tolerance: Apache Airflow is

designed to handle large data workflows and can

scale horizontally to accommodate increased

workloads. It also provides fault tolerance

mechanisms such as task retry and failure

handling to ensure reliability of workflow

execution.

By addressing these challenges, Apache Airflow simplifies

the process of designing, planning, and monitoring data

workflows, enabling organizations to effectively manage

their data processing workloads and gain valuable insights

from their data.

III. LITERATURE REVIEW

"Apache Airflow: A Programmable Workflow

Management System" by M. Bolte et al. (2019)

This document provides an overview of Apache Airflow's

architecture, features, and usage patterns. It discusses the

benefits of using Airflow to manage workflows,

highlighting its scalability, extensibility, and fault-tolerant

design. The article also presents a case study of the use of

Airflow in a real data processing process.

"Evaluation of Workflow Management Systems: A Case

Study with Apache Airflow" by J. Herbst et al. (2020)

This study evaluates Apache Airflow against other

workflow management systems based on performance,

scalability, and usability. It presents a benchmarking

analysis of Airflow's features, performance metrics, and

ease of use for designing and managing data workflows.

The study concludes that Airflow offers a powerful and

user-friendly workflow management platform.

"Apache Airflow: A Survey and Best Practices" by S.

Krishna et al. (2020)

This survey provides an in-depth analysis of Apache

Airflow's architecture, features, and best practices for

pipeline design and deployment. It covers various aspects

of Airflow, including DAG definition, job scheduling, job

dependencies, monitoring, and fault tolerance. The article

also discusses real use cases and provides

recommendations for effective use of Airflow.

"AirflowX: A Performance Evaluation of Apache

Airflow" by R. Cruz et al. (2021)

This research paper focuses on evaluating the performance

of Apache Airflow under various workloads and

configurations. It presents benchmark results for job

execution time, scalability, and resource utilization. The

study also compares Airflow's performance with other

workflow management systems and discusses areas for

optimization and improvement.

"Automating and Scaling Data Pipelines with Apache

Airflow" by M. Kuleshov et al. (2019)

This article discusses the benefits of using Apache Airflow

to automate and scale data pipelines in a cloud computing

environment. It explores the integration of Airflow with

cloud services such as AWS and Google Cloud and

presents a case study of building and managing a large

data pipeline using Airflow. The article highlights the

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12134 246

www.ijarsct.co.in

Impact Factor: 7.301

scalability and flexibility of Airflow to handle complex

data workflows.

IV. RESEARCH METHODOLOGY

Conducted a thorough literature review to understand the

current state of knowledge on Apache Airflow. Studied

academic papers, whitepapers, technical documentation

and articles related to Airflow to gain an overview of

existing research, methodology and findings. Fully

understanding how to automate or schedule workflows

using Apache Airflow. Identified the tasks involved, their

dependencies, and the desired execution order. Installed

Apache Airflow on the computer and configured the

necessary settings such as database connection, launcher

and authentication if needed. Set up the Airflow web

server and scheduler components.

Created directed acyclic graphs (DAGs) that represent

workflows. Each DAG is a Python script that defines tasks

and their dependencies. Define tasks as Airflow operators

such as BashOperator, PythonOperator, or specialized

operators for specific technologies (eg SparkOperator).

Specify task dependencies using the bit-shift (>>)

operator. Apache Airflow also provides the ability to

manage the connections and variables that jobs can access

during execution. Connections store credentials or

connection details (such as a database connection), while

variables can hold arbitrary values. Define and manage

these connections and variables using the Airflow UI or

programmatically. also thoroughly tested the DAGs and

tasks. Validated input and output data, verified job

dependencies, and checked for any errors or failures. Use

Airflow test mode or tools such as the airflow test

command to verify individual tasks. Set uped monitoring

and alerts for workflows. Monitoring DAG status and

tasks in the Airflow web interface. Configured alerts or

notifications to keep you informed of crashes or other

important events. Prepared Apache Airflow environment

for deployment. Ensured it is properly configured, secure

and scalable. Consider using a production-ready web

server like Gunicorn or Nginx. Use Airflow's scalability

features like Celery Executor or Kubernetes Executor to

handle increased workloads or parallel execution.

V. SCOPE AND MOTIVATION

Apache Airflow is broad and covers everything from data

editing and workflow management. Some of the key areas

within Apache Airflow include:

 Workflow Automation: Apache Airflow provides

a platform for workflow and complex tasks

related to data processing, data transformation

and data analysis activities. It simplifies the

automation of many processes by allowing users

to define, schedule and monitor jobs based on

directed acyclic graphs (DAGs).

 Job Dependency Management: Apache Airflow

allows users to specify job dependencies and

ensure their correct execution. Simplifies data

pipeline management by providing a system for

handling workflows, duplications and errors.

 Extensibility and integration: Apache Airflow

provides a variety of connections, operators, and

plug-ins to integrate with various databases,

workflows, and storage systems. This extension

enables users to leverage existing tools and

technologies in data ecosystems and integrate

them into their workflows.

 Monitoring and Logging: Apache Airflow

provides monitoring and logging features that

allow users to track job progress and status. It

provides a user-friendly interface for visualizing

and analyzing operational performance,

facilitating troubleshooting and operational

efficiency.

 Motivation behind Apache Airflow: The

motivation behind the development and adoption

of Apache Airflow is to solve the problem of

managing complex workloads.

 Workflow complexity: Organizations are dealing

with increasingly complex information systems

that involve multiple tasks, dependencies, and

documents. Apache Airflow addresses the need

for a flexible and flexible solution to manage and

simplify these tasks by making it easy to create,

schedule and monitor processes.

 Scalability and reliability: Apache Airflow is

designed to handle large workloads, making it

suitable for organizations that work with large

amounts of data. It ensures efficient and

continuous operation by providing scalability and

reliability.

 Reproducibility and Reusability: Apache Airflow

improves reproducibility by allowing users to

define code-based workflows. This enables work

activities to foster trust, sharing and iteration by

enabling collaboration and knowledge sharing

between teams.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12134 247

www.ijarsct.co.in

Impact Factor: 7.301

 Workflow visibility and control: Apache Airflow

provides a framework for managing and

monitoring workflows. By providing visibility

into work and progress, it gives users more

control over their workflow and facilitates timely

decision-making.

 Community and Ecosystem: Apache Airflow has

a huge and strong open source community. The

community actively contributes to the

development of new features, enhancements, and

integrations, making Apache Airflow a rich and

growing ecosystem. Apache Airflow's motivation

is the overall need to streamline and simplify the

management of complex data operations and

provide great service to organizations. potential,

reliable and continuous data quality control.

VI. ANALYSIS & FINDINGS

Apache Airflow consists of several key components that

work together to enable efficient data pipeline

management. These components include:

1. Scheduler: The scheduler is responsible for

determining when and how tasks in the data

pipeline should be executed. It examines the

dependencies between tasks, their schedules, and

triggers to create an execution plan and ensure

that tasks are executed in the correct order.

2. Executor: An executor is responsible for

executing tasks in the data pipeline. It takes

instructions from the scheduler and runs job

instances on worker nodes or distributed

computing resources. Apache Airflow supports

different types of executors, including Local

Executor, Sequential Executor, and Celery

Executor, allowing flexibility in executing tasks.

3. Task: A task represents a unit of work in a data

pipeline. Each task performs a specific action,

such as extracting data from a source,

transforming data, or loading data into a target.

Tasks are defined as operators in Apache Airflow

and can be customized or extended to meet

specific data processing requirements.

4. Directed Acyclic Graphs (DAGs): DAGs are a

core concept of Apache Airflow. They represent

an entire workflow or pipeline, consisting of

interconnected tasks and their dependencies.

DAGs define the order in which tasks are

performed and provide a visual representation of

the data pipeline structure.

5. Web User Interface: Apache Airflow provides a

web user interface (UI) that allows users to

interact with and monitor data feeds. The user

interface provides features such as DAG

visualization, task status monitoring, schedule

management, and access to log outputs. It offers a

convenient way to manage and monitor data

channels without the need for direct interaction

with the command line.

6. Metadata Database: Apache Airflow relies on a

metadata database to store information about job

states, DAG definitions, and execution history.

The metadata database provides a persistent

storage mechanism and enables functions such as

task status tracking, scheduling, and failure

recovery.

7. Sensors: Sensors in Apache Airflow are

specialized operators that wait for certain

conditions or events to occur before triggering the

execution of subsequent tasks. Sensors are useful

for monitoring external systems, waiting for files

to become available, or checking for the

completion of a particular task before proceeding

with dependent tasks.

8. Hooks: Hooks are interfaces that allow Apache

Airflow to connect and communicate with

external systems such as databases, APIs, cloud

services, or messaging systems. Hooks provide a

consistent and reusable way to access and

manipulate data from these systems within tasks.

9. Variables: Variables in Apache Airflow are used

to store and manage key-value pairs that can be

accessed by tasks during pipeline execution.

Variables provide a way to share and pass

configuration or runtime parameters across jobs.

10. Operator: Apache Airflow provides a wide

variety of built-in operators that encapsulate

specific tasks or operations in the data pipeline.

These operators represent different actions that

can be performed within a workflow. Some

commonly used operators in Apache Airflow are

BashOperator, PythonOperator, SQLOperator,

DockerOperator, HivePartitionSensor,

SparkSubmitOperator. These operators cover a

wide range of tasks and operations that are

commonly performed within data channels.

However, Apache Airflow is extensible and

allows users to create custom operators to handle

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT
www.ijarsct.co.in

Impact Factor: 7.301

specific actions or integrate with external

systems.

Fig. 1 Architecture of Apache Airflow

To monitor system health, we can set up Flower, a web

based monitoring tool for Celery, in which we can check

(among other things) workers, tasks, and the health of the

entire Celery system. Airflow CLI also provides a

convenient command to run Flower: airflow celery flower.

By default, Flower runs on port 5555. Once started, go to

http://localhost:5555 (Figure 2). In the first look at Flower,

we see the number of registered celery workers, their

status, and some high-level information about the

of tasks each worker has processed.

These components work together to provide a flexible and

extensible framework for designing, managing, and

running data feeds in Apache Airflow.

Fig. 2 Flower Dashboard showing status of celery workers

In the Apache Airflow web interface, the Monitor tab

displays various graphical representations of performance

metrics and statistics. These graphs can help users monitor

and analyze data channel behavior and identify conflicts or

problems. Some of the graphs and metrics available on the

Monitoring tab:

 Task Duration: This graph displays the duration

of a single task over time, allowing users to

identify tasks that are being used longer than

expected and improve their performance.

 Number of Job Instances: This grap

number of job instances in various states

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

 DOI: 10.48175/IJARSCT-12134

specific actions or integrate with external

he Airflow

To monitor system health, we can set up Flower, a web-

based monitoring tool for Celery, in which we can check

(among other things) workers, tasks, and the health of the

entire Celery system. Airflow CLI also provides a

Flower: airflow celery flower.

By default, Flower runs on port 5555. Once started, go to

http://localhost:5555 (Figure 2). In the first look at Flower,

we see the number of registered celery workers, their

level information about the number

These components work together to provide a flexible and

extensible framework for designing, managing, and

Fig. 2 Flower Dashboard showing status of celery workers

pache Airflow web interface, the Monitor tab

displays various graphical representations of performance

metrics and statistics. These graphs can help users monitor

and analyze data channel behavior and identify conflicts or

metrics available on the

Task Duration: This graph displays the duration

of a single task over time, allowing users to

identify tasks that are being used longer than

expected and improve their performance.

Number of Job Instances: This graph shows the

number of job instances in various states

(running, successful, failed, etc.) over time to

provide an idea of job execution and events.

 DAG Run Time: This graph shows the duration

of a DAG run and helps the user understand the

total time the DAG took to complete and identify

performance issues.

 Time Lag: This graph shows the delay between

the scheduled time and the completion time of the

task, which allows the user to identify scheduling

problems or delays in the task.

 Utility: Apache Airflow

usage metrics such as CPU and memory usage,

allowing users to monitor Airflow component

resources and analyze actions. These graphs and

metrics provide great insight into the performance

and health of Apache Airflow, allowing users to

achieve better results and troubleshoot pipeline

issues. The Monitoring tab in Apache Airflow

makes it easy to monitor and manage the overall

observability and management of data workflows.

Fig. 3 Monitoring Tab of Flower system to observe

performance of Celery system

VII. FINDINGS

Fig. 3 Popularity of different orchestration tools

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 248

(running, successful, failed, etc.) over time to

job execution and events.

DAG Run Time: This graph shows the duration

of a DAG run and helps the user understand the

DAG took to complete and identify

Time Lag: This graph shows the delay between

the scheduled time and the completion time of the

task, which allows the user to identify scheduling

problems or delays in the task.

Utility: Apache Airflow can provide resource

usage metrics such as CPU and memory usage,

allowing users to monitor Airflow component

resources and analyze actions. These graphs and

metrics provide great insight into the performance

and health of Apache Airflow, allowing users to

achieve better results and troubleshoot pipeline

issues. The Monitoring tab in Apache Airflow

makes it easy to monitor and manage the overall

observability and management of data workflows.

Fig. 3 Monitoring Tab of Flower system to observe

f Celery system

FINDINGS

Fig. 3 Popularity of different orchestration tools

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12134 249

www.ijarsct.co.in

Impact Factor: 7.301

VIII. CONCLUSION

In this paper we have investigated Apache Airflow as a

powerful data orchestration tool that provides various

features to manage and streamline data transmission. In

this research article, we explore various aspects of data

acquisition using Apache Airflow and its benefits for

organizations.

Apache Airflow provides an extensible, flexible and

extensible framework for building and executing complex

workflows. Its ability to schedule and manage jobs in a

distributed and parallel manner makes it useful for big

data. The Apache Airflow Directed Acyclic Graph (DAG)

model provides a graphical representation of pipelines,

making it easier to monitor and manage data flows.

Apache Airflow's automation capabilities reduce manual

work and automate data reprocessing. It provides functions

such as replication, error handling and monitoring to

ensure the reliability and stability of the data channel.

Apache Airflow's integration capabilities enable

integration with many databases, pipeline management

tools and platforms.

Throughout the report, we'll also discuss Apache Airflow's

performance and compare it to other data manipulation

tools. While performance may vary depending on specific

operational features and configuration settings, Apache

Airflow performs in terms of uptime, cost-effectiveness

structure, resource utilization, and errors.

Overall, Apache Airflow is an essential tool for managing

data pipelines, automating data workflows, and ensuring

data efficiency and reliability. Its extensive features,

flexibility, and integration capabilities make it a popular

choice for data engineers and data scientists to build

complex data projects.

As organizations continue to deal with increasing volumes

of data and complex workflows, Apache Airflow provides

a solid foundation for managing pipelines and supporting

efficient workflows. By leveraging the power of Apache

Airflow, organizations can improve data performance,

increase efficiency, and gain timely and reliable insights

from their data.

IX. FUTURE WORK

Apache Airflow is a mature and widely used workflow

orchestration platform. However, there are still some areas

where it could be improved, such as Apache Airflow

performance optimization. This includes increasing the

speed of job execution, reducing resource usage and

improving scalability to handle larger workloads and

larger volumes of data.

Apache Airflow can benefit from advances in scheduling

algorithms and dependency management. This includes

exploring techniques to optimize the task.

Improving Apache Airflow's monitoring and alerting

capabilities can provide better visibility into pipeline

execution. This includes real-time monitoring of task

progress, resource usage and performance metrics, along

with the ability to set automatic alerts for any anomalies or

issues.

Apache Airflow can continue to expand its integration

capabilities with emerging technologies and platforms.

This includes integration with native cloud services, big

data frameworks, machine learning libraries and data

streaming platforms to ensure seamless integration and

support for modern data processing requirements.

Strengthening Apache Airflow's security features is critical

when dealing with sensitive data. This includes improving

authentication and authorization mechanisms,

implementing encryption and privacy controls, and

ensuring compliance with data governance policies and

regulations.

REFERENCES

[1]. M. Beauchemin, (2014) Apache Airflow Project.

[2]. Barika, M., Garg, S., Zomaya, A.Y., Wang, L.,

Moorsel, A.V., Ranjan, R.: Orchestrating big data

analysis workflows in the cloud: research

challenges, survey, and future directions. ACM

Computing Surveys (CSUR) 52(5), 1–41 (2019)

[3]. F. P. Guimarães and A. C. M. Melo, "User-

Defined Adaptive Fault- Tolerant Execution of

Workflows in the Grid," in Proceedings of the

IEEE CIT, Sep 2011, pp. 356-362.

[4]. 4. L. Li, Z. Miao, L. Yuqing, Q. Liangjuan, "A

Survey on Workflow Management and

Scheduling in Cloud Computing", Cluster Cloud

and Grid Computing (CCGrid) 2014 14th

IEEE/ACM InternationalSymposium on, pp. 837-

846, 2014

[5]. M. Kotliar et al., "CWL-Airflow: a lightweight

pipeline manager supporting common workflow

language", bioRxiv, 2018.

[6]. Barker, J. Van Hemert, "Scientific workflow: a

survey and research directions", International

Conference on Parallel Processing and Applied

Mathematics,pp. 746- 753, 2007.

[7]. M. Berger et al., An Evaluation of Workflow

Management System, Austria:Institute for

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12134 250

www.ijarsct.co.in

Impact Factor: 7.301

Applied Computer Science and Information

Systems, University of Vienna, 1997.

[8]. G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan,

"Functionality and Limitations of Current

Workflow Management Systems", IEEE Expert,

vol. 1, no. 9, 1997

