
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/568 209

www.ijarsct.co.in

Impact Factor: 7.301

Application Security and Secure Coding Practices
Nilam Nagesh Lokhande

Student, Department of Masters of Computer Applications

Late Bhausaheb Hiray S. S. Trust’s Hiray Institute of Computer Application, Mumbai, India

nilamlokhande2303@gmail.com

Abstract: The concept of security in web

applications is not new. However, it is often

ignored in the development stages of the

applications. Moreover, developers are more

inclined to implement features and often do not

practice secure coding. Therefore, countless

web applications are launched with security

vulnerabilities like cross-site scripting,

injection attacks and resource alterations. As

software applications are used more often

across a range of industries, maintaining their

security has grown to be a top priority. Web

applications comprise a large proportion of

the contemporary Internet with many of them

dealing with sensitive information and

handling critical operations whose

compromise could result in large monetary

and privacy costs. Naturally, the security of

web applications has become an increasingly

important issue as web technologies are

utilized more and more. Without practicing

secure coding and having an integrity

verification system in place, it is difficult to

defend security attacks. To that end, the

incorporation of security controls throughout

the software development lifecycle (SDLC) has

emerged as the most prominent solution for

detecting security defects early and fixing them

with minimal cost and overhead. This research

paper gives an in-depth analysis of secure

coding techniques and application security.

The study finishes by summarizing the main

conclusions and highlighting the value of

application security and secure encryption

procedures to lower risk and safeguard

sensitive data

Keywords: Vulnerabilities, Security,

guidelines, confidentiality, mitigate, SDLC

I. INTRODUCTION

Application security refers to the discipline of protecting

software applications from threats, vulnerabilities, and

attacks. It involves implementing measures and practices

to identify, mitigate, and prevent security risks throughout

the entire lifecycle of an application. It is reported that

most vulnerabilities originate in the source code of the

application. Specifically, the survey by Positive

Technologies reports a whopping 82% of vulnerabilities

being located in the application code. The main objective

of application security is to ensure the confidentiality,

integrity, and availability of both the application itself and

the data it processes.

Secure coding practices are a set of techniques and

guidelines that developers follow to write code that is

resistant to security vulnerabilities and exploits. By

incorporating secure coding practices into the software

development process, developers can build applications

that are more robust and less susceptible to attacks. These

practices address various aspects of coding, including

input validation, authentication, access control, secure

communication, error handling, and more. The matter of

addressing security in application development calls for

integration of security controls throughout the software

development lifecycle.By incorporating these practices

into the software development process, organizations can

build more secure and resilient applications, reducing the

risk of data breaches and ensuring the protection of

sensitive information.

II. LITERATURE REVIEW

Application security and secure coding practices are

critical aspects of software development that aim to protect

applications from vulnerabilities and potential threats. This

literature review provides an overview of the current

research and best practices in the field of application

security and secure coding.A systematic literature review

(SLR) was selected as the research method for this study.

“An SLR is a type of secondary study in which primary

studies are examined impartially and iteratively to define,

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/568 210

www.ijarsct.co.in

Impact Factor: 7.301

interpret, and discuss evidence relevant to the research

questions”

"Secure Coding: Principles and Practices" by Mark G.

Graff and Kenneth R. van Wyk:

This book offers comprehensive coverage of secure coding

principles and best practices. It covers various

programming languages and provides practical examples,

code snippets, and case studies. The authors emphasize

secure coding techniques to prevent common

vulnerabilities like buffer overflows, injection attacks, and

cross-site scripting.

"The Web Application Hacker's Handbook: Finding

and Exploiting Security Flaws" by Dafydd Stuttard

and Marcus Pin to:

Focused on web application security, this book explores

the techniques used by attackers and provides insights into

securing web applications. It covers topics such as input

validation, authentication, session management, and secure

communication. The authors also delve into common

vulnerabilities and attack vectors, making it a valuable

resource for understanding application security risks.

"OWASP Testing Guide" by The Open Web

Application Security Project (OWASP):

OWASP is a well-known organization dedicated to

improving application security. Their Testing Guide is a

comprehensive resource that outlines various security

testing techniques, methodologies, and tools. It covers all

stages of the software development lifecycle, including

threat modeling, code review, and penetration testing.

"Secure Programming Cookbook for C and C++" by

John Viega and Matt Messier:

This book focuses on secure coding practices specific to C

and C++ programming languages. It provides practical

recipes for addressing common vulnerabilities and

demonstrates how to write secure code using the language-

specific features and libraries. The book covers memory

management, input validation, cryptographic functions,

and secure communication.

"Secure Development for Mobile Apps: How to Design

and Code Secure Mobile Applications with PHP and

JavaScript" by J. D. Glaser.:

With the increasing prevalence of mobile applications, this

book provides insights into secure development practices

specifically for mobile platforms. It covers topics such as

secure data storage, user authentication, handling push

notifications securely, and secure network communication.

The book includes real-world examples and code snippets.

"Building Secure Software: How to Avoid Security

Problems the Right Way" by John Viega and Gary

McGraw:

In this book, the authors emphasize the importance of

integrating security practices into the software

development process from the beginning. It covers

security requirements, threat modelling, secure design

principles, and secure coding techniques. The book

provides actionable recommendations and case studies to

help developers build more secure software.

III. PROBLEM DEFINITION

The problem addressed in this research paper is the need

for effective application security and the implementation

of secure coding practices in software development. The

objective is to identify the specific challenges and issues

faced in ensuring the security of applications and to

propose solutions for integrating secure coding practices

into the development process

Key problem areas include:

 Lack of Security Awareness and Education:

Many developers may not have sufficient

knowledge and awareness of secure coding

practices and the importance of application

security.

 Vulnerability Management: Applications are

susceptible to various vulnerabilities, such as

input validation flaws, insecure session

management, and inadequate authentication

mechanisms. The problem is to effectively

identify, assess, and mitigate these vulnerabilities

throughout the application.

 Integration of Security into Software

Development Lifecycle: Integrating security

practices into the software development lifecycle

can be challenging. The problem is to find

effective ways to seamlessly integrate security

activities, such as secure coding reviews,

vulnerability assessments, and security testing,

into the software development process.

 Emerging Threat Landscape: The threat

landscape is constantly evolving, with new attack

vectors and techniques emerging regularly.

 Compliance with Security Standards and

Regulations: Organizations need to comply with

industry-specific security standards and

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/568 211

www.ijarsct.co.in

Impact Factor: 7.301

regulations to protect user data and ensure the

privacy and security of sensitive information.

 Secure Integration of Third-Party Components:

Many applications rely on third-party libraries,

frameworks, and components. The problem is to

address the security risks associated with third-

party components and establish best practices for

their secure integration and ongoing management.

By addressing these problems, organizations can enhance

the security of their applications, protect sensitive data,

and mitigate the risk of security breaches. The proposed

research aims to identify effective solutions, best practices,

and frameworks for application security and secure coding

practices, ultimately contributing to the development of

more secure software systems.

IV. OBJECTIVE / SCOPE

The objective of this research paper is to investigate and

analyze the various aspects of application security and

secure coding practices. The paper aims to explore the

importance, challenges, best practices, and emerging

trends in the field of application security and secure

coding. It seeks to provide insights, recommendations, and

guidelines to enhance the security of software applications

and promote the adoption of secure coding practices.

4.1 Scope

The research paper will focus on the following key areas

related to application security and secure coding practices:

 Overview of Application Security

 Secure Coding Practices

 Vulnerability Analysis and Mitigation

 Integration of Application Security in Software

Development Lifecycle (SDLC)

 Emerging Trends and Technologies

 Compliance and Regulatory Requirements

The scope of the research on application security and

secure coding practices will encompass various

dimensions and areas of focus including:

 Software Development Lifecycle (SDLC):It

examines how security measures can be

integrated at each stage to ensure secure software

development.

 Programming Languages and Frameworks: The

research focuses on specific programming

languages or frameworks commonly used in

application development.

 Secure Coding Guidelines and Standards: The

research evaluates and propose enhancements to

existing secure coding guidelines and standards

such as OWASP Top Ten, CERT Secure Coding

Standards, or SANS Secure Coding.

 Secure Development Tools and Technologies:

The research explores the effectiveness of various

tools and technologies used for secure application

development.

 Emerging Technologies and Security Challenges:

The scope can extend to emerging technologies

such as cloud computing, Internet of Things

(IoT), blockchain, or artificial intelligence (AI),

and their associated security challenges.

 Human Factors and Education: The research

investigates the role of human factors in

application security, including developer

awareness, training, and secure coding education.

V. RESEARCH METHODOLOGY

The main purpose of this literature review is to study the

current challenges and gaps in application security. It

involves systematic and structured approach to gather,

analyze, and interpret data. Phases involved in carrying out

this research are as follows:

 Planning

 Conducting

 Reporting

A. Research Questions

1.What are the security risks that should be avoided while

designing secure software applications?

2.What are the best practices to follow when designing

secure software applications?

3.What What are the challenges, limitations, and gaps

related to application security?

B. Code Analysis

Analyzed code samples or projects usingstatic analysis

tools, manual reviews, or code scanning techniques to

identify security vulnerabilities, adherence to secure

coding practices, and common pitfalls.

Following steps are part of the research methodology:

 Data Collection

 Data Analysis

 Framework and Model Development

 Case Studies and Experiments

 Recommendations and Guidelines

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT
www.ijarsct.co.in

Impact Factor: 7.301

 Validation and Peer Review

 Conclusion and Limitations

By following this methodology, research paper was

produced to provide valuable insights, practical

recommendations, and guidelines to enhance application

security and promote the adoption of secure coding

practices in software development.

VI. ANALYSIS & FINDINGS

Securing critical software resources is more important than

ever as the focus of attackers has steadily moved toward

the application layer. Study found that attacks against web

applications constitute more than 60% of the total attack

attempts observed on the Internet.

This report provides coding practices that can be translated

into coding requirements without the need for the

developer to have an in depth understanding of security

vulnerabilities and exploits. However, other members of

the development team should have the responsibility,

adequate training, tools and resources to validate that the

design and implementation of the entire system is secure.

Below are set of general software security coding

practices, that can be integrated into the software

development lifecycle. Implementation of these practices

will mitigate most common software vulnerabilities.

Input Validation:

o Conduct all input validation on a trusted system

(server side not client side)

o Identify all data sources and classify them into

trusted and untrusted

o Validate all data from untrusted sources (databases,

file streams, etc)

o Use a centralized input validation routine for the

whole application

o Specify character sets, such as UTF

sources (canonicalization)

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

 DOI: 10.48175/568

By following this methodology, research paper was

produced to provide valuable insights, practical

recommendations, and guidelines to enhance application

security and promote the adoption of secure coding

ANALYSIS & FINDINGS

Securing critical software resources is more important than

ever as the focus of attackers has steadily moved toward

tudy found that attacks against web

n 60% of the total attack

This report provides coding practices that can be translated

into coding requirements without the need for the

developer to have an in depth understanding of security

. However, other members of

the development team should have the responsibility,

adequate training, tools and resources to validate that the

design and implementation of the entire system is secure.

Below are set of general software security coding

practices, that can be integrated into the software

development lifecycle. Implementation of these practices

will mitigate most common software vulnerabilities.

Conduct all input validation on a trusted system

Identify all data sources and classify them into

Validate all data from untrusted sources (databases,

Use a centralized input validation routine for the

Specify character sets, such as UTF-8, for all input

Output Encoding:

o Conduct all output encoding on a trusted system

(server side not client side)

o Utilize a standard, tested routine for each type of

outbound encoding

o Specify character sets, such as UTF

outputs

o Contextually output encode all data returned to the

client from untrusted sources

o Ensure the output encoding is safe for all target

systems

Authentication and password management

o Require authentication for all pages and resources,

except those specifically intended to be public

o All authentication controls must be enforced on a

trusted system

o Establish and utilize standard, tested, authentication

services whenever possible

o Use a centralized implementation for all

authentication controls, including libraries that call

external authentication services

o If your application manages a credential store, use

cryptographically strong one

Session management

o Use the server or framework’s session management

controls. The application should recognize only

these session identifiers as valid

o Session identifier creation must always be done on

a trusted system (server side not client side)

o Session management controls should use well

vetted algorithms that ensure sufficiently random

session identifiers

Access control

 Use only trusted system objects, e.g. server side

session objects, for making access authorization

decisions

 Enforce authorization control

including those made by server side scripts

 Segregate privileged logic from other application

code

 Restrict access to files or other resources,

including those outside the application's direct

control, to only authorized users

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Multidisciplinary Online Journal

 212

Conduct all output encoding on a trusted system

(server side not client side)

Utilize a standard, tested routine for each type of

Specify character sets, such as UTF-8, for all

Contextually output encode all data returned to the

client from untrusted sources

Ensure the output encoding is safe for all target

Authentication and password management

thentication for all pages and resources,

except those specifically intended to be public

All authentication controls must be enforced on a

Establish and utilize standard, tested, authentication

services whenever possible

ralized implementation for all

authentication controls, including libraries that call

external authentication services

If your application manages a credential store, use

cryptographically strong one-way salted hashes

Use the server or framework’s session management

controls. The application should recognize only

these session identifiers as valid

Session identifier creation must always be done on

a trusted system (server side not client side)

controls should use well

vetted algorithms that ensure sufficiently random

Use only trusted system objects, e.g. server side

session objects, for making access authorization

Enforce authorization controls on every request,

including those made by server side scripts

Segregate privileged logic from other application

Restrict access to files or other resources,

including those outside the application's direct

control, to only authorized users

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/568 213

www.ijarsct.co.in

Impact Factor: 7.301

Cryptographic practices

 All cryptographic functions used to protect

secrets from the application user must be

implemented on a trusted system

Error handling and logging

 Do not disclose sensitive information in error

responses, including system details, session

identifiers or account information

 Use error handlers that do not display debugging

or stack trace information

Data protection

 Implement least privilege, restrict users to only

the functionality, data and system information

that is required to perform their tasks

Database security

o Use strongly typed parameterized queries

o Utilize input validation and output encoding and be

sure to address meta characters. If these fail, do not

run the database command

o Use secure credentials for database access

General coding practices

o Utilize task specific built-in APIs to conduct

operating system tasks. Do not allow the

application to issue commands directly to the

Operating System, especially through the use of

application initiated command shells

o Utilize locking to prevent multiple simultaneous

requests or use a synchronization mechanism to

prevent race conditions

o Do not pass user supplied data to any dynamic

execution function

o Review all secondary applications, third party code

and libraries to determine business necessity and

validate safe functionality

By implementing effective security measures and

following secure coding practices, organizations can

significantly reduce the risk of security breaches and

safeguard sensitive data.

Key findings and analysis include:

 Common Vulnerabilities: Through research and

analysis, it has been found that certain

vulnerabilities, such as injection attacks (e.g.,

SQL injection), cross-site scripting (XSS), and

authentication bypass, are prevalent in many

applications. These vulnerabilities can lead to

unauthorized access, data breaches, and other

security incidents.

 Importance of Secure Coding: Secure coding

practices play a crucial role in preventing security

vulnerabilities. By following guidelines and best

practices for secure coding, developers can

minimize the risk of introducing vulnerabilities

during the software development process.

 Integration of Security in SDLC: Integrating

security activities throughout the software

development lifecycle (SDLC) is crucial. This

includes incorporating security requirements

analysis, threat modelling, security testing, and

code reviews at various stages of development.

Organizations that adopt a secure SDLC approach

tend to have more robust and secure applications.

 Secure Third-Party Component Usage: Many

applications rely on third-party libraries and

components. However, it has been observed that

inadequate vetting and management of these

components can introduce vulnerabilities.

Organizations should prioritize the evaluation and

continuous monitoring of third-party components

to ensure their security.

 Emerging Threat Landscape: The threat

landscape is constantly evolving, with new attack

vectors and techniques emerging regularly. The

research in this area highlights the importance of

staying updated on the latest threats and

vulnerabilities to effectively counteract them.

Techniques such as threat intelligence and

proactive vulnerability scanning can aid in

identifying and addressing emerging threats.

 Training and Awareness: Promoting security

education and awareness among developers and

stakeholders is essential. Research emphasizes

the significance of providing training, resources,

and regular knowledge sharing sessions to ensure

that individuals involved in software development

understand the importance of application security

and follow secure coding practices.

VII. LIMITATIONS & FUTURE SCOPE

7.1 Limitations:

 Human Error: Despite following secure coding

practices, human error can still occur. Developers

may inadvertently introduce vulnerabilities or

overlook certain security considerations

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/568 214

www.ijarsct.co.in

Impact Factor: 7.301

 Lack of Standardization: There is a lack of

universal standards and guidelines for secure

coding practices. While organizations can follow

established frameworks like OWASP Top 10 or

CERT Secure Coding Standards.

 Rapid Technological Advancements: The rapid

evolution of technologies, frameworks, and

programming languages introduces new security

challenges. Secure coding practices must adapt to

these advancements, requiring continuous

learning and updates to address emerging

vulnerabilities.

 Time and Resource Constraints: Implementing

robust application security and following secure

coding practices can be time-consuming and

resource-intensive.

 Legacy Systems and Codebases: Organizations

often have legacy systems and codebases that

were developed without adequate security

considerations. Retrofitting security measures

into these systems can be challenging and may

require significant time and effort.

7.2 Future Scope

 Secure DevOps Integration: The integration of

security practices into DevOps methodologies is

gaining prominence. Future research can focus on

effective ways to seamlessly integrate security

controls and processes throughout the DevOps

lifecycle, ensuring security is not an afterthought

but an inherent part of the development process.

 Automation and Tooling: Advancements in

automation and security tooling can enhance

secure coding practices. Future research can

explore the development of advanced static and

dynamic analysis tools, code scanners, and

automated security testing techniques to identify

vulnerabilities and enforce secure coding

practices more efficiently.

 Secure Coding for Emerging Technologies: As

new technologies emerge, such as blockchain,

IoT, and AI, there is a need to develop secure

coding practices specific to these domains.

 Metrics and Evaluation: Developing metrics and

evaluation frameworks for measuring the

effectiveness of secure coding practices can

provide valuable insights. Future research can

explore methodologies for assessing the impact of

secure coding practices on application security,

quantifying the reduction in vulnerabilities, and

evaluating the return on investment in security

measures.

 Collaborative Efforts and Knowledge Sharing:

Encouraging collaboration and knowledge

sharing among developers, security professionals,

and researchers is crucial. Future research can

focus on fostering communities, platforms, and

forums for sharing best practices, case studies,

and lessons learned to collectively enhance

application security and secure coding practices.

VIII. CONCLUSION

In conclusion, the research paper highlights the importance

of incorporating robust security measures and adhering to

secure coding practices in software development. The

findings emphasize that application security is a critical

concern, given the evolving threat landscape and potential

vulnerabilities that can be exploited by malicious actors.

The analysis reveals that secure coding practices, such as

input validation, output encoding, access control, secure

communication, and error handling, significantly

contribute to minimizing security risks. Integration of

security activities throughout the software development

lifecycle (SDLC) and proper management of third-party

components are crucial for building secure applications.

The research paper identifies limitations, including human

error, lack of standardization, resource constraints, and the

challenges of securing legacy systems. Future research

should focus on integrating security practices into DevOps

methodologies, leveraging automation and tooling,

developing secure coding practices for emerging

technologies, establishing metrics and evaluation

frameworks, and promoting collaborative efforts and

knowledge sharing.

Ultimately, the research paper emphasizes the need for

continuous training, awareness, and adaptation to address

emerging threats. By embracing secure coding practices

and implementing effective application security measures,

organizations can enhance their resilience to security

breaches, safeguard sensitive data, and build trustworthy

software applications.

REFERENCES

[1]. Secure Programming Cookbook for C and C++

by John Viega and Matt Messier

[2]. The Art of Software Security Assessment:

Identifying and Preventing Software

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/568 215

www.ijarsct.co.in

Impact Factor: 7.301

Vulnerabilities by Mark Dowd, John

McDonald, and Justin Schuh

[3]. Secure Coding in Java: Best Practices for

Secure Java Development by Robert C. Seacord

[4]. Threat Modeling: Designing for Security by

Adam Shostack

[5]. Secure Development for Mobile Apps: How to

Design and Code Secure Mobile Applications

with PHP and JavaScript by J.D. Glaser

[6]. Secure Coding Guidelines for the Java

Programming Language by Oracle

[7]. Common Weakness Enumeration (CWE) -

MITRE Corporation

[8]. The Building Security In Maturity Model

(BSIMM) by Cigital, Inc.

[9]. Security Development Lifecycle (SDL)

Implementation Guide by Microsoft

[10]. ISO/IEC 27034: Application Security

[11]. NIST SP 800-64: Security Considerations in the

System Development Life Cycle

[12]. CWE (Common Weakness Enumeration) and

CERT Secure Coding Standards

[13]. www.sans.org/reading-room/topics/secure-

coding

[14]. www.nist.gov/topics/software-assurance

[15]. www.computer.org/technical-

committees/center-for-secure-design

