
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12111 71

www.ijarsct.co.in

Impact Factor: 7.301

Improving Software Quality through Deep

Learning: A Comprehensive Literature Study on

Error Prediction in Software Development
Amna Shipra and Avaish Ansari

Students, Master of Computer Application

Late Bhausaheb Hiray S.S Trust’s Hiray Institute of Computer Application, Mumbai, India

amnashipra@gmail.com and ansariavaish01@gmail.com

Abstract: The paper explores the significance

of error prediction in software development

and discusses the use of deep learning

approaches to address this task. It emphasizes

the need for proactive error prevention and the

limitations of reactive bug- fixing strategies.

The study examines various deep learning

models, including Recurrent Neural Networks

(RNNs), Convolutional Neural Networks

(CNNs), and Graph Convolutional Networks

(GCNs), and their applicability in error

prediction. The conclusions drawn from the

study highlight the strengths of each model.

RNNs are effective in capturing temporal

dependencies and sequential patterns in error

data, enabling the analysis of error

progression over time. CNNs excel at

extracting relevant features and local patterns

from software artefacts by treating them as

image-like data. GCNs leverage the graph

structure of software artefacts to capture

structural dependencies and interactions

between code elements. To leverage the

benefits of both temporal and structural

information, the study proposes a hybrid model

that combines RNNs with GCNs for error

prediction. This hybrid model harnesses the

power of deep learning to identify patterns and

model relationships, offering promising results

in accurate error forecasting and prevention in

software development. The adoption of

proactive error prediction techniques

facilitated by deep learning has the potential

to enhance software quality, resource

efficiency, and user experience. By proactively

identifying and addressing errors,

development teams can reduce the impact of

issues before they manifest, leading to

improved software reliability and customer

satisfaction. Overall, the paper highlights the

importance of error prediction in software

development and demonstrates the potential of

deep learning approaches to enhance error

prevention strategies.

Keywords: error prediction, software

development, deep learning, RNNs, CNNs,

GCNs, proactive error prevention, software

quality, temporal dependencies, sequential

patterns, structural dependencies, hybrid model

I. INTRODUCTION

In the context of software development, the term "error

prediction" refers to the practice of foreseeing and

predicting probable faults or flaws that could exist in a

software system. Software error prediction models are a

significant part of software quality assurance and are

commonly used to detect faulty software modules based

on software measurement data [1]. Error prediction tries to

proactively identify and avoid errors before they have an

influence on the software's operation and user experience

by utilizing techniques like machine learning and data

analysis. Software bugs are typically found and fixed

reactively, frequently after users have reported them or

during the testing stage. However, using a reactive strategy

may be time-consuming, expensive, and unsatisfactory to

users. For a number of reasons, error prediction is

essential in software development. It offers proactive

issue prevention, allowing programmers to find and fix

any errors before they have serious consequences. Error

prediction uses methods like machine learning and data

analysis to help find patterns, trends, and indicators that

might result in mistakes in software systems. Thanks to this

proactive strategy, development teams may take

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12111 72

www.ijarsct.co.in

Impact Factor: 7.301

preventative action to reduce risks, raise software quality,

and improve user experience overall.

Error prediction in software development can provide

some difficulties, though. Data quality and availability

provide important challenges since it might be challenging

to get enough data of appropriate quality for error

prediction. Prediction model performance can also be

impacted by imbalanced datasets when the frequency of

mistakes is very low compared to instances without errors.

It can take a lot of time and effort to pick useful features

through feature engineering, which calls for careful thought

to capture pertinent parts of mistakes. In order to

comprehend the motivations behind forecasts and win the

trust of developers, it is also crucial to make sure that

models are interpretable, particularly in the case of deep

learning.

The dynamic nature of software systems also makes

mistake prediction more difficult. New mistake patterns are

continually being introduced by software systems, which

may escape the attention of current models. For precise

predictions, it is essential to take context into account,

such as code alterations or user interactions. Scalability is

a problem since error prediction algorithms must deal with

big datasets and the computing demands of deep learning

models. Despite these difficulties, it is crucial for precise

and successful error prediction to find solutions through

research and innovation. Software quality, developer

productivity, and user experience will all be improved by

addressing difficulties with data availability, class

imbalance, feature engineering, interpretability, dynamic

environments, contextual information, and scalability

Fault prediction modelling is an important area of research

and the subject of many previous studies that produce fault

prediction models, which allows software engineers to

focus development activities on fault-prone code, thereby

improving software quality and making better use of

resources of the system with a high fault probability [2].

For error prediction in software development, a variety of

deep learning algorithms may be used. Recurrent neural

networks (RNNs), which operate best with sequential data,

are one such approach. RNNs can identify temporal

correlations and trends in software logs, enabling them to

forecast mistakes based on the timeline of occurrences.

The analysis of software code or log files can also be done

using convolutional neural networks (CNNs). CNNs can

recognize structural patterns and anomalies that might point

to potential mistakes by applying convolutional operations

to code snippets or log entries. Another method is GCN

(Graph Convolutional Network) can be employed in error

prediction in software development by utilizing the graph

structure of software artefacts. The process involves

representing the artefacts as a graph, assigning features to

nodes, designing a GCN model architecture, training the

model using labelled data, making predictions on new

artefacts, and evaluating the model's performance. By

capturing relationships and dependencies between entities,

GCN enables the early detection of potential errors, aiding

developers in focusing on critical areas during software

development. Deep autoencoders can also be used for

unsupervised learning to spot anomalous behaviour or

outliers in software systems, offering important insights

into potentially error-prone regions. Deep learning

approaches provide a wide range of tools to predict faults

in software development, enabling more precise and

proactive error prevention procedures.

II. LITERATURE REVIEW

Traditional machine learning methods have been tested for

their efficacy in Software Fault Prediction (SFP), but they

have drawbacks such as managing imprecise data and

needing feature engineering. Deep learning techniques

have benefits like automated feature extraction and domain

generalisation. Even though deep learning has primarily

been employed in pre- processing phases in SFP, some

research has used it for classification tasks, such as when

utilising convolutional neural networks, deep belief

networks, and stacked denoising autoencoders. Deep

learning is a potential method for SFP due to its capacity to

handle vast amounts of data and build hierarchical

representations.

In this section, some related work of Deep Learning

techniques is explained.

A. Hasanpour et al. (2004) [3] This study investigates the

classification of imbalanced and inadequately sampled

NASA datasets using the Stack Sparse Auto-Encoder

(SSAE) and Deep Belief Network (DBN) deep learning

models. According to experimental findings, accuracy is

improved for datasets with enough samples, and the SSAE

model beats the DBN model in the majority of assessment

measures.

Y. Ma et al. (2012) [4] This paper addresses the issue of

cross-company software defect prediction, where data

from different companies is used to build prediction

models. The authors propose a novel algorithm called

Transfer Naive Bayes (TNB) that utilizes transfer learning

to leverage information from diverse training data. The

experimental results demonstrate that TNB outperforms

existing methods in terms of accuracy (measured by AUC)

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12111 73

www.ijarsct.co.in

Impact Factor: 7.301

while requiring less runtime. The study suggests that

transferring knowledge from different- distribution training

data at the feature level can improve classifier

performance, potentially reducing software testing costs

and enhancing effectiveness.

Das et al. (2018) [5] recommended utilising a recurrent

neural network as a technique for calculating the

frequency of errors or failures in the software. Recurrent

Neural Networks (RNNs) are powerful models commonly

used in NLP tasks, where they process sequential data by

unfolding the network over time, using hidden states to

capture information from previous steps, and generating

outputs based on inputs and previous outputs, with

parameters remaining the same throughout iterations.

Hammouri A. et al. (2018) [6] discussed software bugs

have a significant impact on software reliability, quality,

and maintenance costs, making bug prediction crucial in

software engineering. This paper explores the use of

machine learning techniques, specifically Naïve Bayes,

Decision Tree, and Artificial Neural Networks classifiers,

to predict faulty modules using historical fault data and

software metrics. The study compares the performance of

these classifiers on different datasets, assessing accuracy,

precision, recall, F-measure, and ROC curves.

Farid et al. (2021) [7] research proposed a hybrid model

called CBIL, combining CNN and Bi-LSTM, to enhance

code review and software testing by predicting defective

areas in source code, achieving significant performance

improvements over baseline models in terms of F-measure

and AUC.

Batool et al. (2022) [8] presented a thorough assessment of

the literature on software defect prediction, with an

emphasis on data mining, machine learning, and deep

learning approaches. On the basis of a collection of 68

primary papers, they analyse prior reviews and studies,

formulate research objectives, assess the effectiveness of

various methodologies, and respond to their research

questions.

R. Malhotra (2015) [9] conducted a systematic review of

64 primary studies from 1991 to 2013, focusing on

machine learning techniques for software fault prediction.

The results demonstrate these techniques' prediction

capability and superiority over traditional statistical

models in estimating software fault proneness. However,

the application of machine learning techniques in this area

is still limited, and further research is needed to obtain

more robust and generalizable results.

III. DEEP LEARNING MODEL FOR ERROR

PREDICTION

A branch of machine learning called "Deep Learning"

focuses on teaching artificial neural networks with

numerous layers to automatically recognise and extract

useful representations from large amounts of complicated

data. It draws inspiration from the design and operation of

the human brain. Massive volumes of data are processed by

deep learning algorithms, which also develop hierarchical

representations at various levels of abstraction.

3.1 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are well-suited for

speech recognition and natural language processing tasks

due to their ability to efficiently analyze sequential data and

capture relationships across time. In the context of

predicting software errors, RNNs are valuable as they can

effectively model temporal relationships in sequential

software artefacts. Sophisticated variations of RNNs, such

as Long Short-Term Memory (LSTM) and Gated Recurrent

Unit (GRU), address the vanishing gradient problem,

enabling the capture of long-term dependencies in the data.

During training, RNNs automatically extract relevant

features from software artefacts, eliminating the need for

explicit feature engineering. By leveraging labelled data,

RNNs can make accurate predictions on new, unseen

artefacts, estimating error likelihood. Performance

evaluation metrics assess their effectiveness in error

prediction. The application of RNNs in software error

prediction enhances the overall quality and reliability of

software systems. By aiding in early mistake identification

and prevention, RNNs enable software practitioners to

proactively address potential issues, leading to improved

software development practices and more dependable

software products.

3.2 Convolution0al Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are widely used in

computer vision but have also shown promise in predicting

software errors by treating software artefacts as image-like

data. CNNs excel at extracting relevant features and local

patterns related to errors, eliminating the need for manual

feature engineering. The model architecture consists of

convolutional, pooling, and fully connected layers,

enabling automatic feature learning during training. By

training CNNs on labelled data, they can make accurate

predictions on new artefacts. Performance evaluation

metrics assess the effectiveness of error prediction.

Utilizing CNNs allows for early error detection and

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12111 74

www.ijarsct.co.in

Impact Factor: 7.301

mitigation, enhancing the overall quality and reliability of

software systems. Their ability to process software

artefacts as images provides a unique perspective on error

patterns, contributing to the advancement of error

prediction techniques in software development.

3.3 GCN, or Graph Convolutional Network

In software error prediction, combining Recurrent Neural

Networks (RNNs) and Graph Convolutional Networks

(GCNs) can enhance accuracy. First, software artefacts are

represented as graphs, with nodes representing elements

and edges denoting relationships. GCNs are then applied,

extracting features and capturing structural information.

Next, the graph representations are converted into

sequential data based on order or relevance. RNNs process

this sequential data, capturing temporal dependencies and

patterns. The combination of GCNs and RNNs allows the

model to leverage both structural and temporal information.

The final layers of the model predict error occurrences. By

training the model with labelled data, it learns to identify

error-prone regions. The performance is evaluated using

metrics like precision and recall, demonstrating the

effectiveness of this approach in early software error

detection. Further customization and exploration can

improve the model's performance in software error

prediction tasks.

IV. DEEP LEARNING HYBRID MODEL FOR

ERROR PREDICTION

Error prediction in software development is essential for

seeing and stopping possible problems before they have an

impact on the system. Recurrent neural networks (RNNs)

and graph convolutional networks (GCNs) are two

effective methods for error prediction. Each of these

methods has particular advantages that may be used to

raise the precision and potency of mistake prediction in

software development.

The temporal relationships and sequential patterns in error

data are particularly well-suited for recurrent neural

networks (RNNs). They are excellent at analysing how

mistakes change over time, which helps them comprehend

the dynamics of software faults. RNNs may identify

patterns that suggest the possibility of upcoming errors and

simulate the progression of coding faults. RNNs are able to

forecast probable future errors by learning from prior

errors that have already occurred. This skill is extremely

useful when creating software since it enables programmers

to take preventative action by learning from past mistakes.

However, structural dependencies and interactions

between code parts represented as graphs are well-

captured by Graph Convolutional Networks (GCNs),

which are another powerful tool. Code in software

development frequently has intricate relationships, and

GCNs may use the graph structure to efficiently

determine the effects of mistakes on nearby code

sections. GCNs can find complex correlations and patterns

by comprehending the connections between code

sections that may go unnoticed by conventional error

prediction techniques. For the purpose of error prediction,

software engineers can make use of the advantages of both

approaches by integrating RNNs and GCNs in a hybrid

model. The graph structure and temporal correlations may

be successfully included in the hybrid GCN-RNN

model to predict software development failures. This

method attempts to get over the constraints of traditional

error prediction techniques by using deep learning to find

intricate patterns and relationships in software code and

error data.

In order to capture structural relationships, the hybrid

model's design would include supplying the GCN layers

with software artefacts that are represented as graphs. The

RNN layers would receive the output of the GCN layers,

which now includes knowledge of the connections

between code components, in a sequential fashion. In

order to anticipate the occurrence of mistakes in the future,

the RNN layers would learn from the sequence of errors

and capture temporal relationships.

The hybrid GCN-RNN model may learn to correlate

particular patterns in the graph structure and temporal

sequences with error proneness by training on labelled

data with mistakes recognised. The model's ability to

reliably forecast mistakes may be measured using

evaluation measures like accuracy, recall, or F1 score. A

thorough and effective method to error prediction in

software development is provided by the hybrid GCN-RNN

model. This model can give software practitioners useful

insights to spot potential problems early in the

development process and take preventative measures to

improve the quality and reliability of software systems by

leveraging both the structural relationships and temporal

dependencies in software artefacts.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12111 75

www.ijarsct.co.in

Impact Factor: 7.301

Steps Followed:

 Gather and prepare data for software

development.

 Divide the data into sets for training and testing.

 Get the data ready for the GCN and RNN models.

 Describe the RNN model's architecture.

 Use input sequences that are sequentially encoded.

 Set the RNN model's parameters appropriately.

 Use the training data to train the RNN model.

 Make use of the testing data to validate the RNN

model.

 Predict mistakes on fresh data using the learned

RNN model.

 Use a graph structure to represent software

artefacts.

 Give each node in the graph a feature.

 Create the GCN model's architecture.

 Set the correct settings for the GCN model.

 Use the training set to train the GCN model.

 Assess the performance of the GCN model using

the test data.

 Use the GCN model that has been taught to

foretell faults in brand-new software artefacts.

 Combine the RNN and GCN models' forecasts.

 Specify an appropriate integration plan for the

hybrid model.

 Use the training data to perfect the hybrid model.

 Assess the hybrid model's performance using the

test data.

 Examine the performance indicators to find areas

that need work.

 Improve the models by changing the architectures

or hyperparameters.

 Use testing data to validate the improved models.

 Use actual software development situations to test

the trained and improved models.

 Use the RNN model to predict mistakes based on

sequential patterns and temporal relationships.

 Use the GCN model to look for probable faults

and structural relationships.

 Take proactive steps to avoid software

development problems.

 Continually review and incorporate fresh data into

the error prediction models.

Example for GCN_RNN Model

import torch

import torch.nn as nn

import torch.optim as optim

Define the combined GCN-RNN model

class GCN_RNN(nn.Module):

def __init__(self, gcn_input_size,

gcn_hidden_size, rnn_input_size,

rnn_hidden_size, output_size):

super(GCN_RNN, self).__init__()

self.gcn = nn.Linear(gcn_input_size,

gcn_hidden_size)

self.rnn = nn.GRU(rnn_input_size,

rnn_hidden_size)

self.fc = nn.Linear(gcn_hidden_size +

rnn_hidden_size, output_size)

def forward(self, gcn_inputs,

rnn_inputs):

gcn_output =

torch.relu(self.gcn(gcn_inputs))

rnn_output, _ =

self.rnn(rnn_inputs.unsqueeze(0))

rnn_output = rnn_output.squeeze(0)

combined = torch.cat((gcn_output,

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12111 76

www.ijarsct.co.in

Impact Factor: 7.301

rnn_output), dim=1)

output = self.fc(combined)

return output

Generate random inputs and labels

(simplified for demonstration)

gcn_inputs = torch.randn(100, 10)

rnn_inputs = torch.randn(100, 5)

labels = torch.randint(2, (100,))

Create an instance of the GCN-RNN model

gcn_input_size = gcn_inputs.size(1)

gcn_hidden_size = 32

rnn_input_size = rnn_inputs.size(1)

rnn_hidden_size = 64

output_size = 2 # Binary classification (has

error or not)

model = GCN_RNN(gcn_input_size,

gcn_hidden_size, rnn_input_size,

rnn_hidden_size, output_size)

Define loss function and optimizer

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(),

lr=0.01)

Training loop

num_epochs = 10

for epoch in range(num_epochs):

optimizer.zero_grad()

outputs = model(gcn_inputs, rnn_inputs)

loss = criterion(outputs, labels)

loss.backward()

optimizer.step()

print(f"Epoch [{epoch+1}/{num_epochs}],

Loss: {loss.item()}")

Test the model

test_gcn_inputs = torch.randn(10, 10)

test_rnn_inputs = torch.randn(10, 5)

test_outputs = model(test_gcn_inputs,

test_rnn_inputs)

predicted_labels = torch.argmax(test_outputs,

dim=1)

print("Predicted Labels:", predicted_labels)

Output:

V. CONCLUSION

This research study addresses the use of deep learning

approaches for this purpose and concludes by highlighting

the importance of mistake prediction in software

development. The necessity of proactive mistake avoidance

and the drawbacks of reactive bug-fixing strategies are

emphasized in the study. It covers different deep learning

models and explores their use in error prediction, including

Recurrent Neural Networks (RNNs), Convolutional Neural

Networks (CNNs), and Graph Convolutional Networks

(GCNs).

According to the study's conclusions, RNNs can accurately

capture temporal dependencies and sequential patterns in

error data, allowing for the investigation of error

progression over time. The capacity of CNNs to extract

pertinent features and local patterns from software

artefacts and treat them as image- like data is

demonstrated. Software artefacts' graph structures are used

by GCNs to capture structural dependencies and

interactions between code elements.

By including both temporal and structural information, this

study's hybrid model for error prediction combines RNNs

with GCNs. The model's capability to make use of deep

learning's ability to recognize patterns and model

relationships offers promise for precise forecasting and

preventing mistakes in software development Overall, the

quality of software, resource efficiency, and user

experience may all be improved by software development

teams implementing proactive mistake prediction tactics

made possible by deep learning.

REFERENCES

[1] Wang, H., Khoshgoftaar, T.M., Napolitano, A.:

Software measurement data reduction using ensemble

techniques. Neurocomputing 92 (2012) 124–132

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 2, July 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-12111 77

www.ijarsct.co.in

Impact Factor: 7.301

[2] Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell,

S.: A systematic literature review on fault prediction

performance in software engineering. Software

Engineering, IEEE Transactions on 38 (2012) 1276–1304

[3] Ahmad Hasanpour, Pourya Farzi, Ali Tehrani, Reza

Akbari, “Software Defect Prediction Based On Deep

Learning Models: Performance Study”

https://arxiv.org/ftp/arxiv/papers/2004/2004.02589.pdf

[4] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer

learning for cross- company software defect prediction”

Information and Software Technology, vol. 54, no. 3, pp.

248–256, 2012.

[5] S. Das, R. K. Behera, S. K. Rath et al., “Real-time

sentiment analysis of Twitter streaming data for stock

prediction” Procedia computer science, vol. 132, pp. 956–

964, 2018.

[6] Hammouri A, Hammad M, Alnabhan M, Alsarayrah F.

2018. Software bug prediction using machine learning

approach. International Journal of Advanced Computer

Science and Applications 9(2):78-83

[7] Farid AB, Fathy EM, Sharaf Eldin A, Abd-Elmegid

LA. 2021. Software defect prediction using hybrid model

(CBIL) of convolutional neural network (CNN) and

bidirectional long short- term memory (Bi-LSTM) PeerJ

Computer Science 7:e739 https://doi.org/10.7717/peerj-

cs.739

[8] Software fault prediction using data mining, machine

learning and deep learning techniques: A systematic

literature review Batool I., Khan T.A. (2022) Computers

and Electrical Engineering, 100, art. no. 107886

[9] R. Malhotra, "A systematic review of machine learning

techniques for software fault prediction" Applied Soft

Computing Journal (2015)

