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Abstract: The paper explores the significance 

of error prediction in software development 

and discusses the use of deep learning 

approaches to address this task. It emphasizes 

the need for proactive error prevention and the 

limitations of reactive bug- fixing strategies. 

The study examines various deep learning 

models, including Recurrent Neural Networks 

(RNNs), Convolutional Neural Networks 

(CNNs), and Graph Convolutional Networks 

(GCNs), and their applicability in error 

prediction. The conclusions drawn from the 

study highlight the strengths of each model. 

RNNs are effective in capturing temporal 

dependencies and sequential patterns in error 

data, enabling the analysis of error 

progression over time. CNNs excel at 

extracting relevant features and local patterns 

from software artefacts by treating them as 

image-like data. GCNs leverage the graph 

structure of software artefacts to capture 

structural dependencies and interactions 

between code elements. To leverage the 

benefits of both temporal and structural 

information, the study proposes a hybrid model 

that combines RNNs with GCNs for error 

prediction. This hybrid model harnesses the 

power of deep learning to identify patterns and 

model relationships, offering promising results 

in accurate error forecasting and prevention in 

software development. The adoption of 

proactive error prediction techniques 

facilitated by deep learning has the potential 

to enhance software quality, resource 

efficiency, and user experience. By proactively 

identifying and addressing errors, 

development teams can reduce the impact of 

issues before they manifest, leading to 

improved software reliability and customer 

satisfaction. Overall, the paper highlights the 

importance of error prediction in software 

development and demonstrates the potential of 

deep learning approaches to enhance error 

prevention strategies. 
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I. INTRODUCTION 

In the context of software development, the term "error 

prediction" refers to the practice of foreseeing and 

predicting probable faults or flaws that could exist in a 

software system. Software error prediction models are a 

significant part of software quality assurance and are 

commonly used to detect faulty software modules based 

on software measurement data [1]. Error prediction tries to 

proactively identify and avoid errors before they have an 

influence on the software's operation and user experience 

by utilizing techniques like machine learning and data 

analysis. Software bugs are typically found and fixed 

reactively, frequently after users have reported them or 

during the testing stage. However, using a reactive strategy 

may be time-consuming, expensive, and unsatisfactory to 

users. For a number of reasons, error prediction is 

essential in software development. It offers proactive 

issue prevention, allowing programmers to find and fix 

any errors before they have serious consequences. Error 

prediction uses methods like machine learning and data 

analysis to help find patterns, trends, and indicators that 

might result in mistakes in software systems. Thanks to this 

proactive strategy, development teams may take 
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preventative action to reduce risks, raise software quality, 

and improve user experience overall. 

Error prediction in software development can provide 

some difficulties, though. Data quality and availability 

provide important challenges since it might be challenging 

to get enough data of appropriate quality for error 

prediction. Prediction model performance can also be 

impacted by imbalanced datasets when the frequency of 

mistakes is very low compared to instances without errors. 

It can take a lot of time and effort to pick useful features 

through feature engineering, which calls for careful thought 

to capture pertinent parts of mistakes. In order to 

comprehend the motivations behind forecasts and win the 

trust of developers, it is also crucial to make sure that 

models are interpretable, particularly in the case of deep 

learning. 

The dynamic nature of software systems also makes 

mistake prediction more difficult. New mistake patterns are 

continually being introduced by software systems, which 

may escape the attention of current models. For precise 

predictions, it is essential to take context into account, 

such as code alterations or user interactions. Scalability is 

a problem since error prediction algorithms must deal with 

big datasets and the computing demands of deep learning 

models. Despite these difficulties, it is crucial for precise 

and successful error prediction to find solutions through 

research and innovation. Software quality, developer 

productivity, and user experience will all be improved by 

addressing difficulties with data availability, class 

imbalance, feature engineering, interpretability, dynamic 

environments, contextual information, and scalability 

Fault prediction modelling is an important area of research 

and the subject of many previous studies that produce fault 

prediction models, which allows software engineers to 

focus development activities on fault-prone code, thereby 

improving software quality and making better use of 

resources of the system with a high fault probability [2]. 

For error prediction in software development, a variety of 

deep learning algorithms may be used. Recurrent neural 

networks (RNNs), which operate best with sequential data, 

are one such approach. RNNs can identify temporal 

correlations and trends in software logs, enabling them to 

forecast mistakes based on the timeline of occurrences. 

The analysis of software code or log files can also be done 

using convolutional neural networks (CNNs). CNNs can 

recognize structural patterns and anomalies that might point 

to potential mistakes by applying convolutional operations 

to code snippets or log entries. Another method is GCN 

(Graph Convolutional Network) can be employed in error 

prediction in software development by utilizing the graph 

structure of software artefacts. The process involves 

representing the artefacts as a graph, assigning features to 

nodes, designing a GCN model architecture, training the 

model using labelled data, making predictions on new 

artefacts, and evaluating the model's performance. By 

capturing relationships and dependencies between entities, 

GCN enables the early detection of potential errors, aiding 

developers in focusing on critical areas during software 

development. Deep autoencoders can also be used for 

unsupervised learning to spot anomalous behaviour or 

outliers in software systems, offering important insights 

into potentially error-prone regions. Deep learning 

approaches provide a wide range of tools to predict faults 

in software development, enabling more precise and 

proactive error prevention procedures. 

 

II. LITERATURE REVIEW 

Traditional machine learning methods have been tested for 

their efficacy in Software Fault Prediction (SFP), but they 

have drawbacks such as managing imprecise data and 

needing feature engineering. Deep learning techniques 

have benefits like automated feature extraction and domain 

generalisation. Even though deep learning has primarily 

been employed in pre- processing phases in SFP, some 

research has used it for classification tasks, such as when 

utilising convolutional neural networks, deep belief 

networks, and stacked denoising autoencoders. Deep 

learning is a potential method for SFP due to its capacity to 

handle vast amounts of data and build hierarchical 

representations. 

In this section, some related work of Deep Learning 

techniques is explained. 

A. Hasanpour et al. (2004) [3] This study investigates the 

classification of imbalanced and inadequately sampled 

NASA datasets using the Stack Sparse Auto-Encoder 

(SSAE) and Deep Belief Network (DBN) deep learning 

models. According to experimental findings, accuracy is 

improved for datasets with enough samples, and the SSAE 

model beats the DBN model in the majority of assessment 

measures. 

Y. Ma et al. (2012) [4] This paper addresses the issue of 

cross-company software defect prediction, where data 

from different companies is used to build prediction 

models. The authors propose a novel algorithm called 

Transfer Naive Bayes (TNB) that utilizes transfer learning 

to leverage information from diverse training data. The 

experimental results demonstrate that TNB outperforms 

existing methods in terms of accuracy (measured by AUC) 
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while requiring less runtime. The study suggests that 

transferring knowledge from different- distribution training 

data at the feature level can improve classifier 

performance, potentially reducing software testing costs 

and enhancing effectiveness. 

Das et al. (2018) [5] recommended utilising a recurrent 

neural network as a technique for calculating the 

frequency of errors or failures in the software. Recurrent 

Neural Networks (RNNs) are powerful models commonly 

used in NLP tasks, where they process sequential data by 

unfolding the network over time, using hidden states to 

capture information from previous steps, and generating 

outputs based on inputs and previous outputs, with 

parameters remaining the same throughout iterations. 

Hammouri A. et al. (2018) [6] discussed software bugs 

have a significant impact on software reliability, quality, 

and maintenance costs, making bug prediction crucial in 

software engineering. This paper explores the use of 

machine learning techniques, specifically Naïve Bayes, 

Decision Tree, and Artificial Neural Networks classifiers, 

to predict faulty modules using historical fault data and 

software metrics. The study compares the performance of 

these classifiers on different datasets, assessing accuracy, 

precision, recall, F-measure, and ROC curves. 

Farid et al. (2021) [7] research proposed a hybrid model 

called CBIL, combining CNN and Bi-LSTM, to enhance 

code review and software testing by predicting defective 

areas in source code, achieving significant performance 

improvements over baseline models in terms of F-measure 

and AUC. 

Batool et al. (2022) [8] presented a thorough assessment of 

the literature on software defect prediction, with an 

emphasis on data mining, machine learning, and deep 

learning approaches. On the basis of a collection of 68 

primary papers, they analyse prior reviews and studies, 

formulate research objectives, assess the effectiveness of 

various methodologies, and respond to their research 

questions. 

R. Malhotra (2015) [9] conducted a systematic review of 

64 primary studies from 1991 to 2013, focusing on 

machine learning techniques for software fault prediction. 

The results demonstrate these techniques' prediction 

capability and superiority over traditional statistical 

models in estimating software fault proneness. However, 

the application of machine learning techniques in this area 

is still limited, and further research is needed to obtain 

more robust and generalizable results. 

 

III. DEEP LEARNING MODEL FOR ERROR 

PREDICTION 

A branch of machine learning called "Deep Learning" 

focuses on teaching artificial neural networks with 

numerous layers to automatically recognise and extract 

useful representations from large amounts of complicated 

data. It draws inspiration from the design and operation of 

the human brain. Massive volumes of data are processed by 

deep learning algorithms, which also develop hierarchical 

representations at various levels of abstraction. 

 

3.1 Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are well-suited for 

speech recognition and natural language processing tasks 

due to their ability to efficiently analyze sequential data and 

capture relationships across time. In the context of 

predicting software errors, RNNs are valuable as they can 

effectively model temporal relationships in sequential 

software artefacts. Sophisticated variations of RNNs, such 

as Long Short-Term Memory (LSTM) and Gated Recurrent 

Unit (GRU), address the vanishing gradient problem, 

enabling the capture of long-term dependencies in the data. 

During training, RNNs automatically extract relevant 

features from software artefacts, eliminating the need for 

explicit feature engineering. By leveraging labelled data, 

RNNs can make accurate predictions on new, unseen 

artefacts, estimating error likelihood. Performance 

evaluation metrics assess their effectiveness in error 

prediction. The application of RNNs in software error 

prediction enhances the overall quality and reliability of 

software systems. By aiding in early mistake identification 

and prevention, RNNs enable software practitioners to 

proactively address potential issues, leading to improved 

software development practices and more dependable 

software products. 

 

3.2 Convolution0al Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are widely used in 

computer vision but have also shown promise in predicting 

software errors by treating software artefacts as image-like 

data. CNNs excel at extracting relevant features and local 

patterns related to errors, eliminating the need for manual 

feature engineering. The model architecture consists of 

convolutional, pooling, and fully connected layers, 

enabling automatic feature learning during training. By 

training CNNs on labelled data, they can make accurate 

predictions on new artefacts. Performance evaluation 

metrics assess the effectiveness of error prediction. 

Utilizing CNNs allows for early error detection and 
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mitigation, enhancing the overall quality and reliability of 

software systems. Their ability to process software 

artefacts as images provides a unique perspective on error 

patterns, contributing to the advancement of error 

prediction techniques in software development. 

 

3.3 GCN, or Graph Convolutional Network 

In software error prediction, combining Recurrent Neural 

Networks (RNNs) and Graph Convolutional Networks 

(GCNs) can enhance accuracy. First, software artefacts are 

represented as graphs, with nodes representing elements 

and edges denoting relationships. GCNs are then applied, 

extracting features and capturing structural information. 

Next, the graph representations are converted into 

sequential data based on order or relevance. RNNs process 

this sequential data, capturing temporal dependencies and 

patterns. The combination of GCNs and RNNs allows the 

model to leverage both structural and temporal information. 

The final layers of the model predict error occurrences. By 

training the model with labelled data, it learns to identify 

error-prone regions. The performance is evaluated using 

metrics like precision and recall, demonstrating the 

effectiveness of this approach in early software error 

detection. Further customization and exploration can 

improve the model's performance in software error 

prediction tasks. 

 

IV. DEEP LEARNING HYBRID MODEL FOR 

ERROR PREDICTION 

Error prediction in software development is essential for 

seeing and stopping possible problems before they have an 

impact on the system. Recurrent neural networks (RNNs) 

and graph convolutional networks (GCNs) are two 

effective methods for error prediction. Each of these 

methods has particular advantages that may be used to 

raise the precision and potency of mistake prediction in 

software development. 

The temporal relationships and sequential patterns in error 

data are particularly well-suited for recurrent neural 

networks (RNNs). They are excellent at analysing how 

mistakes change over time, which helps them comprehend 

the dynamics of software faults. RNNs may identify 

patterns that suggest the possibility of upcoming errors and 

simulate the progression of coding faults. RNNs are able to 

forecast probable future errors by learning from prior 

errors that have already occurred. This skill is extremely 

useful when creating software since it enables programmers 

to take preventative action by learning from past mistakes. 

However, structural dependencies and interactions 

between code parts represented as graphs are well-

captured by Graph Convolutional Networks (GCNs), 

which are another powerful tool. Code in software 

development frequently has intricate relationships, and 

GCNs may use the graph structure to efficiently 

determine the effects of mistakes on nearby code 

sections. GCNs can find complex correlations and patterns 

by comprehending the connections between code 

sections that may go unnoticed by conventional error 

prediction techniques. For the purpose of error prediction, 

software engineers can make use of the advantages of both 

approaches by integrating RNNs and GCNs in a hybrid 

model. The graph structure and temporal correlations may 

be successfully included in the hybrid GCN-RNN 

model to predict software development failures. This 

method attempts to get over the constraints of traditional 

error prediction techniques by using deep learning to find 

intricate patterns and relationships in software code and 

error data. 

In order to capture structural relationships, the hybrid 

model's design would include supplying the GCN layers 

with software artefacts that are represented as graphs. The 

RNN layers would receive the output of the GCN layers, 

which now includes knowledge of the connections 

between code components, in a sequential fashion. In 

order to anticipate the occurrence of mistakes in the future, 

the RNN layers would learn from the sequence of errors 

and capture temporal relationships. 

The hybrid GCN-RNN model may learn to correlate 

particular patterns in the graph structure and temporal 

sequences with error proneness by training on labelled 

data with mistakes recognised. The model's ability to 

reliably forecast mistakes may be measured using 

evaluation measures like accuracy, recall, or F1 score. A 

thorough and effective method to error prediction in 

software development is provided by the hybrid GCN-RNN 

model. This model can give software practitioners useful 

insights to spot potential problems early in the 

development process and take preventative measures to 

improve the quality and reliability of software systems by 

leveraging both the structural relationships and temporal 

dependencies in software artefacts. 
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Steps Followed: 

 
 Gather and prepare data for software 

development. 

 Divide the data into sets for training and testing. 

 Get the data ready for the GCN and RNN models. 

 Describe the RNN model's architecture. 

 Use input sequences that are sequentially encoded. 

 Set the RNN model's parameters appropriately. 

 Use the training data to train the RNN model. 

 Make use of the testing data to validate the RNN 

model. 

 Predict mistakes on fresh data using the learned 

RNN model. 

 Use a graph structure to represent software 

artefacts. 

 Give each node in the graph a feature. 

 Create the GCN model's architecture. 

 Set the correct settings for the GCN model. 

 Use the training set to train the GCN model. 

 Assess the performance of the GCN model using 

the test data. 

 Use the GCN model that has been taught to 

foretell faults in brand-new software artefacts. 

 Combine the RNN and GCN models' forecasts. 

 Specify an appropriate integration plan for the 

hybrid model. 

 Use the training data to perfect the hybrid model. 

 Assess the hybrid model's performance using the 

test data. 

 Examine the performance indicators to find areas 

that need work. 

 Improve the models by changing the architectures 

or hyperparameters. 

 Use testing data to validate the improved models. 

 Use actual software development situations to test 

the trained and improved models. 

 Use the RNN model to predict mistakes based on 

sequential patterns and temporal relationships. 

 Use the GCN model to look for probable faults 

and structural relationships. 

 Take proactive steps to avoid software 

development problems. 

 Continually review and incorporate fresh data into 

the error prediction models. 

 

Example for GCN_RNN Model 

import torch 

import torch.nn as nn 

import torch.optim as optim 

# Define the combined GCN-RNN model 

class GCN_RNN(nn.Module): 

def __init__(self, gcn_input_size,  

gcn_hidden_size, rnn_input_size,  

rnn_hidden_size, output_size): 

super(GCN_RNN, self).__init__() 

self.gcn = nn.Linear(gcn_input_size,  

gcn_hidden_size) 

self.rnn = nn.GRU(rnn_input_size,  

rnn_hidden_size) 

self.fc = nn.Linear(gcn_hidden_size + 

rnn_hidden_size, output_size) 

def forward(self, gcn_inputs,  

rnn_inputs): 

gcn_output = 

torch.relu(self.gcn(gcn_inputs)) 

rnn_output, _ = 

self.rnn(rnn_inputs.unsqueeze(0)) 

rnn_output = rnn_output.squeeze(0) 

combined = torch.cat((gcn_output,  
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rnn_output), dim=1) 

output = self.fc(combined) 

return output 

# Generate random inputs and labels  

(simplified for demonstration) 

gcn_inputs = torch.randn(100, 10) 

rnn_inputs = torch.randn(100, 5) 

labels = torch.randint(2, (100,)) 

# Create an instance of the GCN-RNN model 

gcn_input_size = gcn_inputs.size(1) 

gcn_hidden_size = 32 

rnn_input_size = rnn_inputs.size(1) 

rnn_hidden_size = 64 

output_size = 2  # Binary classification (has  

error or not) 

model = GCN_RNN(gcn_input_size,  

gcn_hidden_size, rnn_input_size,  

rnn_hidden_size, output_size) 

# Define loss function and optimizer 

criterion = nn.CrossEntropyLoss() 

optimizer = optim.Adam(model.parameters(),  

lr=0.01) 

# Training loop 

num_epochs = 10 

for epoch in range(num_epochs): 

optimizer.zero_grad() 

outputs = model(gcn_inputs, rnn_inputs) 

loss = criterion(outputs, labels) 

loss.backward() 

optimizer.step() 

print(f"Epoch [{epoch+1}/{num_epochs}],  

Loss: {loss.item()}") 

# Test the model 

test_gcn_inputs = torch.randn(10, 10) 

test_rnn_inputs = torch.randn(10, 5) 

test_outputs = model(test_gcn_inputs,  

test_rnn_inputs) 

predicted_labels = torch.argmax(test_outputs,  

dim=1) 

print("Predicted Labels:", predicted_labels) 

 

 

 

 

 

 

 

 

 

Output: 

 
 

V. CONCLUSION 

This research study addresses the use of deep learning 

approaches for this purpose and concludes by highlighting 

the importance of mistake prediction in software 

development. The necessity of proactive mistake avoidance 

and the drawbacks of reactive bug-fixing strategies are 

emphasized in the study. It covers different deep learning 

models and explores their use in error prediction, including 

Recurrent Neural Networks (RNNs), Convolutional Neural 

Networks (CNNs), and Graph Convolutional Networks 

(GCNs). 

According to the study's conclusions, RNNs can accurately 

capture temporal dependencies and sequential patterns in 

error data, allowing for the investigation of error 

progression over time. The capacity of CNNs to extract 

pertinent features and local patterns from software 

artefacts and treat them as image- like data is 

demonstrated. Software artefacts' graph structures are used 

by GCNs to capture structural dependencies and 

interactions between code elements. 

By including both temporal and structural information, this 

study's hybrid model for error prediction combines RNNs 

with GCNs. The model's capability to make use of deep 

learning's ability to recognize patterns and model 

relationships offers promise for precise forecasting and 

preventing mistakes in software development Overall, the 

quality of software, resource efficiency, and user 

experience may all be improved by software development 

teams implementing proactive mistake prediction tactics 

made possible by deep learning. 

 

REFERENCES 

[1] Wang, H., Khoshgoftaar, T.M., Napolitano, A.: 

Software measurement  data  reduction  using  ensemble  

techniques. Neurocomputing 92 (2012) 124–132 



IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

                             International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

 Volume 3, Issue 2, July 2023 

Copyright to IJARSCT  DOI: 10.48175/IJARSCT-12111                  77 

www.ijarsct.co.in                                                   

Impact Factor: 7.301 

[2] Hall, T., Beecham, S., Bowes, D., Gray, D., Counsell, 

S.: A systematic literature review on fault prediction 

performance in software engineering. Software 

Engineering, IEEE Transactions on 38 (2012) 1276–1304 

[3] Ahmad Hasanpour, Pourya Farzi, Ali Tehrani, Reza 

Akbari, “Software Defect Prediction Based On Deep 

Learning Models: Performance Study” 

https://arxiv.org/ftp/arxiv/papers/2004/2004.02589.pdf 

[4] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer 

learning for cross- company software defect prediction” 

Information and Software Technology, vol. 54, no. 3, pp. 

248–256, 2012. 

[5] S. Das, R. K. Behera, S. K. Rath et al., “Real-time 

sentiment analysis of Twitter streaming data for stock 

prediction” Procedia computer science, vol. 132, pp. 956–

964, 2018. 

[6] Hammouri A, Hammad M, Alnabhan M, Alsarayrah F. 

2018. Software bug prediction using machine learning 

approach. International Journal of Advanced Computer 

Science and Applications 9(2):78-83 

[7] Farid AB, Fathy EM, Sharaf Eldin A, Abd-Elmegid 

LA. 2021. Software defect prediction using hybrid model 

(CBIL) of convolutional neural network (CNN) and 

bidirectional long short- term  memory  (Bi-LSTM) PeerJ  

Computer  Science 7:e739 https://doi.org/10.7717/peerj-

cs.739 

[8] Software fault prediction using data mining, machine 

learning and deep learning techniques: A systematic 

literature review Batool I., Khan T.A. (2022) Computers 

and Electrical Engineering, 100, art. no. 107886 

[9] R. Malhotra, "A systematic review of machine learning 

techniques for software fault prediction" Applied Soft 

Computing Journal (2015)

 

 


