(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal FiEp 00)
ISSN: 2581-9429 Volume 3, Issue 3, July 2023 Impact Factor: 7.301

A Survey of Tools, Techniques, and Best Practices:
CI/CD Integration in DevOps Workflows

Pooja Chandrashekar
Independent Researcher
pchandr1998@gmail.com

Abstract: The modern sofiware development requires quickness, dependability, and flexibility that are
not always provided by traditional methodologies. DevOps, as a collaborative model, has been
developed to overcome these challenges by combining development and operations through automation
and continuous feedback. This paper provides a detailed discussion of the CI/CD integration in DevOps
processes, the tools, techniques, and practices that should be considered in order to improve
performance, scalability, and efficiency of automation. Some of Infrastructure as code (IaC), automated
testing, performance optimization methodologies, continuous integration and delivery pipelines, and
other important topics are discussed in the research. The results show that DevOps implementation
enhances software delivery speed and collaboration, and increases system reliability by simplifying
development and deployment. Also, the cloud-native approaches like service meshes and micro services
architecture are compatible with scalability and resilience even more. In general, this paper highlights
that properly executed DevOps principles can help to transform the software delivery process into a fast,
automated, and efficient activity that allows organizations to deliver the releases on time and realize
operational efficiency.

Keywords: Cloud Computing, DevOps Practices, Continuous Integration (CI), Continuous Delivery
(CD), Cloud-Native Architecture

I. INTRODUCTION

DevOps concept was developed to overcome the lack of connectivity between the software development phase and the
implementation of the same software into production in the big software organizations [1]. The primary goal of DevOps
is to implement the agile software development lifecycle's foundational principle of continuous software development,
which is achieved through microservices and continuous delivery and deployment. More and more software is being
delivered online, either directly to the customer's device or through server-side models like Software as a Service.
Another development in this area is the widespread use of mobile platforms and technologies that power this software.
Continuous Delivery (CD) is one of the fundamental movements among DevOps. It allows software teams to develop
deployable software in short and iterative cycles, which means that new releases are possible at any point with minimal
risk [2]. Those organizations that effectively embrace CD have a high level of enhancement in the deployment
frequency, lead time as well as system stability. Not all application domains are however easy to implement CD
especially where the old architecture and poor automation hamper scalability and uniformity. Most of the studies focus
on the build, test and deployment automation but the architectural as well as the organizational issues involved in the
adoption of CD are not well researched.

A recent trend named DevOps is likely to help software organizations achieve these objectives. It has been defined that
DevOps is an organizational strategy that sought to establish empathy and cross-functional collaboration [3]. DevOps
has also been referred to as a” stub on more global company cooperation. DevOps has been defined to achieve the aim
of reducing the duration of software development and deployment without sacrificing quality [4]. Agile, scalable, and
resilient enterprise system architectures are required because of the dynamic nature of enterprise systems in the digital
age. The convergence of artificial intelligence (AI), DevOps, and Datapost is defining cloud-native solutions to redefine
the blueprint of most modern enterprise architectures [5]. All these technologies are focused on tackling the problem of

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11978V

o . [ssn
www.ijarsct.co.in | 2581-9429 |1

1366

&\ IJARSCT ¥
Q

(/ IJARSCT

Xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal
ISSN: 2581-9429 Volume 3, Issue 3, July 2023 Impact Factor: 7.301

escalating complexity in business operations by providing simplified business procedures, accelerated innovations, and
decision-making abilities.

CI/CD is a technique of releasing applications to customers regularly, through the introduction of automation in the
application development stage. The fundamental concepts of CI/CD are continuous deployment and continuous
integration. The introduction of CI/CD would be able to enhance the efficiency of the development team, speed up the
development process, and improve the quality of the final product [6]. However, there are usually resistive forces that
organizations face in the implementation of CI/CD, they encompass things like inefficient operations, sluggish
execution, lack of motivation to change behaviour, and the lack of automation. These challenges have the power to
disrupt the pipelines delivering products and waste systems resources. Therefore, the consideration of the effects of
human factors has made improving software development studies on the efficacy of continuous integration and
continuous delivery.

Data pipelines are significant to the machine learning lifecycle because they guarantee the availability of quality data to
be used in training and inference. Unchecked pipelines can create inconsistencies in data, biases and ineffective use of
resources [7]. The need for strong, automated data pipelines keeps increasing with the increase in the size of Al
programs of organizations. Companies are also committing more capital to tools and technologies that qualify data
pipeline automation, and hence, workflow efficiency [8]. ML capabilities such as intelligent automation, anomaly
detection, and predictive analytics are key to DevOps. For example, ML algorithms can process logs and metrics in real
time and detect performance problems before they affect end users.

A. Structure of the Paper

The paper is structured as follows: Section I introduces DevOps and CI/CD concepts. Section II covers key DevOps
tools, pipelines, and practices. Section III explains cloud-native environments. Section IV discusses their benefits and
challenges. Section V reviews related literature, and Section VI concludes the paper with future directions.

I1. DEVOPS CI/CD PIPELINES AND TOOLS
Cloud technology utilizes resources and infrastructure to develop and deploy applications and software, which builds a
runtime environment in the shortest time possible. The cloud, therefore, provides an enabler to continuous development
and integration where the resources are released on demand to general application life cycle management [9]. When
using cloud computing, a company need not be concerned with infrastructure anymore; therefore, any tool required in
the development can be purchased in a timely manner. The development process is accelerated and products are
supplied on time because of this. Both updates can be completed in a fast and efficient manner.

A. Overview of DevOps Pipelines

The infrastructure DevOps pipeline is used to bring structure to infrastructure management by supporting efficient,
scalable, and reliable deployment. Its primary objective is to enable the continuous integration and continuous delivery
(CI/CD) of infrastructure changes. Automation provides control over the construction, testing, and deployment of
infrastructure changes through the pipeline, enabling faster and more reliable implementations, as shown in Figure 1.
Continuous integration enables regular combination and experimentation of updates, whereas continuous delivery helps
to set up these changes to the production system smoothly and efficiently.

Continuous Integration and Continuous Delivery (CI/CD) Pipeline
cl co

A A

Build Test

-
Continuous Monitoring

Fig. 1.CI/CD Pipeline

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11978V 1367

www.ijarsct.co.in 7/ 1ssN g

| 2581-9429 |}

P (IJARSCT

g Y /
Xx International Journal of Advanced Research in Science, Communication and Technology ‘1\
IJ AR SCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 3, Issue 3, July 2023

Continuous Integration (CI)
It is a common practice in software development teams to regularly merge and integrate development tasks, sometimes

even many times a day. Software organizations may enhance software quality, boost team efficiency, and establish
quicker and more frequent release cycles with the help of continuous integration [10]. In this process, there is
automated software building and testing. Whenever a developer makes some changes, an automated building and
testing system is initiated, as indicated in Figure 2. This guarantees that any new change does not conflict with the
current code, and hence, there is no integration error. Without CI, code developed by different team members can
become highly unsynchronized, ultimately affecting quality and performance.

CODE ANALYg;q

CONTINUOUS
INTEGRATION

GIT GITHUB RELEASE

Fig. 2.Continuous Integration Flow

Continuous Delivery
The software engineering method known as continuous delivery (CD) involves many yet brief iterations of the software

development life cycle. The cycle's speed and reliability are guaranteed by relying on automation at each stage. It uses a
series of procedures to automate software deployment and delivery to a setting that mimics production [11].
Application developers may more easily send updates to the container registry or code repository using the Continuous
Delivery (CD) strategy. As can see in Figure 3, it also demonstrates the automated error testing that goes into making

these modifications.

CONTINUOUS }“‘m\v"’*)‘

CEIEEEEl DELIVERY

Fig. 3. Continuous Delivery Flow

Continuous Deployment (CDE)
A software engineering method known as continuous deployment involves testing, vetting, and deploying incremental

software upgrades to production settings in a continuous fashion (see Figure 4). It is possible to deploy updates to the
program within hours after they are made [12]. Agile software development, which emerged in the late 90s and is
currently utilized in some form by most businesses, is one of the main advances that have allowed and incentivized

continuous deployment.

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11978V Vs 1368
ISSN_ ¢

www.ijarsct.co.in e

76 IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology \

IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 3, Issue 3, JuIy 2023 Impact Factor: 7.301
4
4 » Deploy Verity Wonitor Respond ‘i
» 4 citsn R = 3 il
Continuous Continuaus + " s
Exploration Integration
»

Continuous Deployment

Fig. 4. Continuous Deployment Flow

B. DevOps Tools
The development and operations paradigm is being superseded by DevOps. There has been a paradigm change that
unites the operations and development teams. Figure 5 depicts the many components of the DevOps methodology,
including a shift in mindset, new approaches to management, and technological resources for implementing best
practices.

Jenkins: CI/CD

‘Orchestration

Docker: Al-Driven

Containerization Environment

est
Automation Management

Git:
Version
Control

Al Automation Callouts

-« Predictive Deployment Scheduling
+ Anomaly Detection in CI/CD

Fig. 5.DevOps Automation Tools

e VAGRANT: Vagrant is a platform for creating and managing remote environments for developing applications.
It separates the project's settings and dependencies from other projects so they won't interfere with the tools the
app uses. By utilizing the same settings as the machine, it may quickly create identical environments on other
machines.

e Jenkins: Jenkins automates continuous integration and delivery (CI/CD) using an open-source automation server.
Its functionality is extended via plugins, enabling build, test, and deployment automation across various languages
and technologies [13]. This allows code changes to automatically trigger builds, tests, and deployments,
improving efficiency and reliability. Supported by a strong open-source community, Jenkins is a key tool for
CI/CD automation.

e Container: A program and all of its necessary libraries, dependencies, and other binaries are contained within a
container, which serves as a comprehensive runtime environment. The whole lot is included in this bundle [14].
Application and infrastructure dependencies may be eliminated with containerization. Docker is one of the most
prominent software firms that helps us develop and bundle apps for deployment.

e Docker: Docker is the platform for building Linux containers. A virtualization approach known as Docker
employs a Docker engine rather than containers [15]. Virtual machines rely on hypervisors, while Docker
facilitates the execution of several programs on a single host computer. Every one of them is executed in its own
little container.

e Git: Git enables programmers to keep their own local repositories and either pull updates from the central
repository or submit pull requests to the central node. Whenever necessary, the previous code version is utilized
[16]. Using Git, can also monitor how far along are in the development process. It has the capability to save many
versions of source code and restore an earlier version if needed.

The Table I present a comparative overview of CI, CD, and CDE, emphasizing their automation scope, benefits,
deployment frequency, dependencies, and distinct roles in enhancing software delivery efficiency and reliability

1369

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11978V

. . 7 1ssn N
www.ijarsct.co.in i 2581-9429 |5

(X
X7
IJARSCT

ISSN: 2581-9429

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 3, July 2023

Table 1: Comparative Overview of DevOps Pipeline Practices

Impact Factor: 7.301

Aspect Continuous Continuous Delivery (CD) | Continuous Deployment (CDE)
Integration (CI)

Key Practices Automated building | Extends CI with automated | Fully = automates deployment to
and testing; frequent | release pipelines up to | production without manual approval.
code merges. production readiness.

Level of | Automates build and | Automates build, test, and | Automates build, test, staging, and

Automation test phases. staging deployment phases. | production deployment phases.

Main Benefit Identifies conflicts | Enables fast, reliable | Delivers changes to users immediately;
and bugs early, | releases; reduces human | maximizes speed and agility.
thereby improving | errors; and provides quick
software quality and | responses to feedback.
team productivity.

Deployment Multiple integrations | Ready for release anytime; | Production deployments occur
Frequency occur daily, with | production deployment may | automatically and frequently (even
releases dependent | still be manual. multiple times a day).

on manual steps.

Dependency Foundation for CD | Builds on CI; required for | Builds on CI and CD; full automation.
and CDE. CDE.

Typical Use | Any modern | Teams aiming for frequent, | Organizations need continuous

Case software predictable releases. customer-facing updates.
development team.

Key Difference | Focus on integrating | Adds automation up to | Pushes automation through to production
and testing code. staging and release | deployment.

readiness.

II1. TESTING AND IMPLEMENTATION STRATEGIES IN DEVOPS
The best practices and implementation methods of DevOps place a heavy focus on mechanization, teamwork, and
ongoing enhancement. Implementing practices like infrastructure-as-code, automated testing, and CI/CD pipeline
execution, and promoting a culture of shared ownership can lead to quicker and more reliable software delivery (Figure
6).

BEST PRACTICES AND
IMPLEMENTATION STRATEGIES

IN DEVOPS
= D
= I
CI/CD Pipelines '”fr:SStC'ggte“re
[J
Q o
[@
-—a

Culture of Shared
Responsibility

Automated
Testing

Fig. 6.Practices and Implementation

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11978V 1370

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

({ IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal FiEp 00)
ISSN: 2581-9429 Volume 3, Issue 3, July 2023 Impact Factor: 7.301

A. Best Practices of DevOps

To streamline DevOps pipelines by integrating performance testing, several best practices have been developed. These
practices are aimed at accurate and complete performance testing; through these, the organizations are likely to identify
and remedy performance problems at the earliest stage and provide quality software systems. The above best practices
outline the main approaches to incorporating performance testing into DevOps.

e DevOps test culture: In a software company, the culture is crucial for the teamwork involved in testing and
analyzing test findings [17]. The preparation and implementation of tests should be handled by a
multidisciplinary team. The time, money, equipment, and resources needed to conduct tests may be better
planned with the aid of this test architect.

e Continuous test strategy: The term "continuous testing" refers to the practice of include testing at every stage
of creating software. As a result, the DevOps software development pipeline's necessary test activities are
precisely specified in terms of both scope and breadth.

o End-to-end test integration: The end-to-end integration is made feasible by integrating the DevOps tests into
all levels and phases of the delivery pipeline that is always running. Whenever there is a modification to the
continuous delivery process pipeline, these tests are updated accordingly.

e Test Data Optimization: Optimizing test data focuses on using minimal, representative, or synthetic datasets.
That way, can test all of important situations thoroughly while reducing memory utilization and execution time.

Implementation Strategies for Cloud-Native Systems:

Cloud-native systems have Infrastructure as Code (IaC) to code and manage the physical and virtual infrastructure in a
version-controlled code, to provide consistency and repeatability [18]. They also adopt service meshes to manage and
monitor service-to-service communication in microservices, improving reliability, security, and observability without
adding complexity for developers.

o Infrastructure as Code (IaC): The "code (rather than manual commands) for setting up (virtual) machines and
networks, installing packages, and configuring the environment for the application of interest" is the core
principle of infrastructure as code (IaC). Physical hardware ("bare metal") as well as software-defined networks,
containers, and virtual machines are all part of the infrastructure that this code controls. Just like any other
software, this code has to go through a development and management pipeline that includes design, testing, and a
version-controlled repository for storage [19].

e Service Mesh: In microservices architectures, a service mesh acts as an underlying software infrastructure layer
that regulates and tracks communication between services. A "data plane" that contains the application code and
network proxies is the usual structure, and a "control plane" that allows the application code to communicate
with the proxies is also common. Operators ("platform engineers") in this architecture are given additional tools
to ensure visibility, security, and stability, while developers ("service owners") are completely oblivious to the
service mesh's existence.

IV. BENEFITS AND CHALLENGES OF DEVOPS
Cloud services are provided in cloud computing environments, which makes use of the internet or an internal system
[20]. The meaning of trust in an organization is the assurance of the customers of the capabilities of the organization to
deliver the demanded services in a reliable and accurate manner [21].

A. Benefits
DevOps is used to assist organizations in developing quicker, more dependable and superior software. They enable
them to integrate continuously, conduct automated testing, and release continuously, thus improving release speed,
team collaboration, and reducing error rates. DevOps also enhances scalability, efficiency and responsiveness to the
dynamic requirements of business.
e Speed: Automation helps to quicken the development and deployment processes, and therefore, it enables the
team to release features and updates faster.

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11978V 1371

o . [ssn
www.ijarsct.co.in | 2581-9429 |1

&\ IJARSCT ¥
Q

({ IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal FiEp 00)
ISSN: 2581-9429 Volume 3, Issue 3, July 2023 Impact Factor: 7.301

e Reliability: Automation also eliminates errors on the part of human beings, making the behaviours of the system
more stable and predictable.

e Scalability: The automated systems are able to cope with more workloads without the proportional rise in
manual efforts since they do not interfere with the growth of the business.

e Consistency: The uniformity of the deployments is guaranteed with standardized automated processes, and
therefore, they reduce differences between the environments.

e Enhanced Collaboration: The automation culture promotes a shared responsibility culture between the
development and operations teams since it enhances communication and efficiency.

B. Challenges

The IT firms and software products can vary in terms of maturity and implementation, posing challenges on
transforming design and implementation within teams and organizations. Therefore, implementing an effective DevOps
transformation is not an easy task in itself [22]. DevOps must be more than tooling and automation in practice to
actually provide value; merely installing a solution is not enough. DevOps should incorporate culture, process and
technology.

e Data Management: A notable researched area of cloud computing is cloud data management. The physical
security system of the data centres is usually inaccessible to the service providers, hence they need the
infrastructure provider to ensure maximum protection of the data [23]. Although in the case of a personal cloud,
the service provider can just define the security environment remotely and does not know whether it is being
fully applied.

e Security Concerns: The fast delivery cycle, utilization of cloud-native computing, and complicated environment
present emerging security threats. Conventional security gates are obstacles to swift growth and implementation
[24]. It may be difficult to implement a solid security practice further up the DevOps pipeline since it involves a
change of mindset and the implementation of new processes and tools.

e Complexity in Tools Selection: The needs of every organization are varied, and it is very difficult to choose the
best DevOps tools to achieve a successful DevOps strategy. Tools available in the market range from version
control systems and automation tools to monitoring and deployment platforms. Therefore, choosing the
appropriate toolkit is key to DevOps success.

V. LITERATURE REVIEW
This review of the literature mostly discusses how DevOps approaches and continuous integration and delivery (CI/CD)
pipelines contribute to the new software development paradigm. It emphasizes the role of automated pipelines and
cooperative working processes in solving the problems of the deployment speed, system maintainability, and the
flexibility of the processes.
Gupta et al. (2022) have proven that by utilizing container-based applications, a number of complex CI/CD concerns,
such as version control, portability, elasticity, and visibility, may be resolved. More specialized teams may handle
particular containers under the modular method, making development easier, faster, safer, and more effective. In this
respect, Gi tops—a relatively new area of focus in software development—offers a faster, more efficient, more
dependable, and more agile way to optimise performance with a cloud-native applications [25].
Putra and Kabetta (2022) have shown how to implement DevSecops on an a web-based Agile software development
life cycle (SDLC) information system created using the Node.js, Dart, Express.js, and Flutter frameworks. The five-
stage cycle outlined in this paper consists of continuous development, testing, integration, deployment, and monitoring.
The technologies used to achieve this cycle are GitLab and Docker. When compared to the manual process of system
development in the past, this approach shortens and streamlines the time it takes to create, test, and deploy [26].
Thobari et al. (2021) adapted the DevOps toolchain—a collection of automated technologies that enable DevOps and
CI/CD—to the game development situation. Game construction, Steam deployment, and error reporting are the primary
areas of automation for this tool. The DevOps toolchain may optimize several processes and decrease contact costs,

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11978V

o . [ssn
www.ijarsct.co.in | 2581-9429 |1

1372

&\ IJARSCT ¥
Q

IJARSCT

(X
O%
IJARSCT

ISSN: 2581-9429

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 3, July 2023 Impact Factor: 7.301

which can enhance developer productivity by as much as two times, according to user reviews done on innovators and
early adopters [27].
Garg et al. (2021) Provided a broader view of the MLOps and DevOps processes, as well as the machine learning
lifecycle generally. It delves into the methods and resources utilized to establish continuous integration and continuous
delivery pipelines for ML frameworks while utilizing the MLOps methodology. Pull and push deployments in Gi tops
are also covered in the conversation. Last but not least, we highlight ongoing research obstacles to help direct future
research efforts [28].
Zhao et al. (2020) presented the software engineering community's Cloud DevOps infrastructure and demonstrated its
effective use for diverse agents to reproduce research in domains pertaining to computer science. With the help of
DevOps, researchers may more reliably communicate the results of their experiments with others by utilizing publicly
accessible computer resources in the cloud for studies of a medium size, as well as self-hosted computing engines for
massively parallel computing[29].
Rangnau et al. (2020) suggested a way to integrate three types of automated dynamic testing into a pipeline for
continuous integration and delivery, and provided an assessment of the associated overhead. The research identifies
specific technological and research obstacles the DevSecOps community may face and proposes potential solutions.
Decisions on the use of DevSecOps methods in corporate security and agile enterprise application engineering might be
based on the results [30].
Zdun et al. (2019) conducted a comprehensive qualitative analysis of 25 practitioner-authored deployment practice
descriptions that included informal deployment pipeline models. also produced a well-defined model of designs for
deployment pipelines. Furthermore, when contrasted with the pipelines in the original sources that were informally
simulated, the formal model significantly improves the modeling precision [31].
Table II provides a summary of the recent works on CI/CD and DevOps with an emphasis on the approaches, tools, and
main results. Such challenges are the complexity of integration and scalability, and the future trends are regarding
standardization, interoperability, and abatement to a variety of environments.

Table 2: Summary of Previous Study on DevOps CI/CD Pipelines and Practices

Reference | Study On Approach Key Findings Challenges / | Future Directions
Limitations
Gupta et | Container- Introduced Version control, | Implementation Enhance GitOps
al. (2022) | based container-based transparency, complexity in large- | automation and
applications | modular flexibility, and | scale distributed | container
in CI/CD | development with | portability are all | systems. orchestration for
pipelines GitOps integration | enhanced. Facilitated cloud-native
for CI/CD | development that was systems.
optimization. quicker, safer, and
more efficient.
Putra and | DevSecOps | Streamlined the | Significantly reduced | Limited to web- | Extend DevSecOps
Kabetta integration in | development, manual effort; | based applications; | practices to other
(2022) Agile SDLC | testing, integration, | streamlined build, | scalability not tested | development
for web- | deployment, and | testing, and | on enterprise | environments and
based monitoring phases | deployment systems. evaluate
systems of DevSecOps | processes. performance on
with the help of larger systems.
GitLab and
Docker.
Thobari et | Automation | Designed a | Increased developer | Focused only on | Expand the
al. (2021) | tools for | DevOps toolchain | productivity by 2x | game development; | DevOps toolchain
DevOps and | to streamline the | due to reduced | lacks generalization | framework for
Copyright to IJARSCT DOI: 10.48175/IJARSCT-11978V 1373

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

0OS
X%
IJARSCT

ISSN: 2581-9429

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

Volume 3, Issue 3, July 2023

Impact Factor: 7.301

CI/CD in | process of | manual interaction | to other domains. multi-domain
game building, and pipeline software
development | deploying, and | optimization. development.
reporting errors for
electronic games
on Steam.
Garg et al. | Integration Compared DevOps | Highlighted Implementation Address
(2021) of CI/CD in | and MLOps | operational challenges in ML | automation and
MLOps frameworks, differences between | model reproducibility
lifecycle analyzing CI/CD | DevOps and MLOps; | reproducibility and | gaps in MLOps
tools and GitOps- | discussed push and | lifecycle automation. | pipelines.
based pull deployment
deployments. strategies.
Zhao et al. | Cloud Proposed using | Enabled reliable | Resource constraints | Enhance the
(2020) DevOps cloud-based and | reproduction of | for large-scale | accessibility — and
infrastructure | self-hosted research experiments | computation on | scalability of cloud
for computing for | using scalable | limited DevOps
reproducible | experiment sharing | DevOps infrastructure. environments to
experiments | in computer | infrastructure. support scientific
science. research.
Rangnau Integration Included three | Recognized critical | Performance Develop optimized
et al. | of automated | forms of | issues with and | overhead from | testing techniques
(2020) testing in | automated potential solutions to | dynamic testing; | with reduced
CI/CD for | dynamic testing | integrating complexity of | overhead for
DevSecOps into CI/CD and | DevSecOps into agile | maintaining pipeline | DevSecOps
evaluated the | systems. stability. environments.
practical cost.
Zdun et | Formal Conducted Enhanced precision | Focused on | Enhance the formal
al., (2019) | modeling of | qualitative analysis | of deployment | qualitative analysis; | model by
deployment | of 25 practitioner- | pipeline modeling | lacks quantitative | incorporating
pipeline defined pipeline | compared to informal | validation. empirical
architectures | models and | approaches. validation and real-
developed formal world CI/CD case
specifications. studies.

Copyright to IJARSCT
www.ijarsct.co.in

VI. CONCLUSION AND FUTURE WORK
The increasing pressure placed on the software industry to deliver swiftly, reliably and within the scope of a scaled
environment has led to the necessity of new development practices that would help to emulate the constraints of old
practices. DevOps has become a revolutionary methodology that fills the divide between the development and
operations, putting focus on automation, development, and improvement. In this work, we have introduced the idea of
DevOps using CI/CD pipelines in order to evaluate DevOps's function in modern software engineering. The results also
reveal that automation, Infrastructure as Code (IaC), and continuous testing are the key factors to increase the speed of
deployment, consistency, and quality of products. Service meshes and microservices are implemented as cloud-native
and an addition to make the architectures flexible and resilient. Moreover, DevOps pipelines have performance
optimization practices, which guarantee greater reliability and more rapid feedback. All in all, this research shows that
CI/CD created on the basis of DevOps do not only help reduce the software delivery but also promote innovation and
flexibility, creating a sturdy base on which companies can attain sustainable development in a highly dynamic cyber-

DOI: 10.48175/IJARSCT-11978V

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q

1374

(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal iEp €O
ISSN: 2581-9429 Volume 3, Issue 3, July 2023 Impact Factor: 7.301

environment.

Future studies are needed to improve standardization and solve DevOps adoption issues, such as interoperability
between tools, data management, and security integration. The research of Al-powered DevOps (AIOps) can help to
improve analytics, anomaly detection, and automation. Scalability and performance can be enhanced by developing
frameworks of serverless, edge, and hybrid applications and adaptive models of large-scale microservices.

REFERENCES

[1] M. Senapathi, J. Buchan, and H. Osman, “DevOps capabilities, practices, and challenges: Insights from a case
study,” ACM Int. Conf. Proceeding Ser., vol. Part F1377, pp. 1-11, 2018, doi: 10.1145/3210459.3210465.

[2] L. Chen, “Microservices: Architecting for Continuous Delivery and DevOps,” 2018. doi:
10.1109/ICSA.2018.00013.

[3] F. Erich, C. Amrit, and M. Daneva, “A Qualitative Study of DevOps Usage in Practice,” J. Softw. Evol.
Process, vol. 00, 2017, doi: 10.1002/smr.1885.

[4] G. Abbas and H. Nicola, “Optimizing Enterprise Architecture with Cloud-Native Al Solutions: A DevOps and
DataOps Perspective,” 2018, doi: 10.13140/RG.2.2.15898.04803.

[5] B. R. Cherukuri, “Future of cloud computing: Innovations in multi-cloud and hybrid architectures,” World J.
Adv. Res. Rev., vol. 1, no. 1, pp. 068-081, Feb. 2019, doi: 10.30574/wjarr.2019.1.1.0002.

[6] Q. Liao, “Modelling CI/CD Pipeline Through Agent-Based Simulation,” in 2020 IEEE International
Symposium on Software Reliability Engineering Workshops (ISSREW), 2020, pp. 155-156. doi:
10.1109/ISSREW51248.2020.00059.

[7] V. M. L. G. Nerella, “A database-centric CSPM framework for securing mission-critical cloud workloads,” Int.
J. Intell. Syst. Appl. Eng., vol. 10, no. 1, pp. 209-217, 2022.

[8] R. Sinha, “Automation of Data Pipelines in Machine Learning Workflows: Trends, Tools, and Challenges,” Int.
J. Artif. Intell. Mach. Learn., vol. 17, no. 4,2017.

[9] A. Chaudhary, M. Gabriel, R. Sethia, S. Kant, and S. Chhabra, “Cloud DevOps CI -CD Pipeline,” 2021.

[10] I Karamitsos, S. Thabit, and C. Apostolopoulos, “Applying DevOps Practices of Continuous Automation for
Machine Learning,” Information, vol. 11, no. 7, p. 363, Jul. 2020, doi: 10.3390/info11070363.

[11] L C. Donca, O. P. Stan, M. Misaros, D. Gota, and L. Miclea, “Method for Continuous Integration and
Deployment Using a Pipeline Generator for Agile Software Projects,” Sensors, vol. 22, no. 12, 2022, doi:
10.3390/s22124637.

[12] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm, “Continuous deployment at Facebook
and OANDA,” in Proceedings of the 38th International Conference on Software Engineering Companion, May
2016, pp. 21-30. doi: 10.1145/2889160.2889223.

[13] K. Akshaya, HL; Nisarga, Jagadish S; Vidya, J; Veena, “A Basic Introduction to DevOps Tools,” Int. J.
Comput. Sci. Inf. Technol., vol. 6, no. March, pp. 14, 2015.

[14] C. Singh, N. S. Gaba, M. Kaur, and B. Kaur, “Comparison of Different CI/CD Tools Integrated with Cloud
Platform,” in 2019 9th International Conference on Cloud Computing, Data Science & Engineering
(Confluence), IEEE, Jan. 2019, pp. 7-12. doi: 10.1109/CONFLUENCE.2019.8776985.

[15] J. Shah, D. Dubaria, and J. Widhalm, “A Survey of DevOps tools for Networking,” 2018 9th IEEE Annu.
Ubiquitous Comput. Electron. Mob. Commun. Conf. UEMCON 2018, pp. 185-188, 2018, doi:
10.1109/UEMCON.2018.8796814.

[16] A. Agarwal, S. Gupta, and T. Choudhury, “Continuous and Integrated Software Development using DevOps,”
in 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE),
2018, pp. 290-293. doi: 10.1109/ICACCE.2018.8458052.

[17] S. Rafi, M. A. Akbar, S. Mahmood, A. Alsanad, and A. Alothaim, “Selection of DevOps best test practices: A
hybrid approach using ISM and fuzzy TOPSIS analysis,” J. Softw. Evol. Process, vol. 34, no. 5, p. €2448, 2022,
doi: https://doi.org/10.1002/smr.2448.

[18] A. Sharma and S. Kabade, “Serverless Cloud Computing for Efficient Retirement Benefit Calculations,” Int. J.

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11978V 1375

o . [ssn
www.ijarsct.co.in | 2581-9429 |1

&\ IJARSCT ¥
Q

(IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal iEp €O
ISSN: 2581-9429 Volume 3, Issue 3, July 2023 Impact Factor: 7.301

Curr. Sci., vol. 12, no. 4, 2022.

[19] E. Chirivella-Perez, J. M. A. Calero, Q. Wang, and J. Gutiérrez-Aguado, “Orchestration Architecture for
Automatic Deployment of 5G Services from Bare Metal in Mobile Edge Computing Infrastructure,” Wirel.
Commun. Mob. Comput., vol. 2018, 2018, doi: 10.1155/2018/5786936.

[20] V. Verma, “Big Data and Cloud Databases Revolutionizing Business Intelligence,” TIJER, vol. 9, no. 1, pp.
48-58,2022.

[21] M. F. Mushtaq, U. Akram, I. Khan, S. Nageeb, A. Shahzad, and A. Ullah, “Cloud Computing Environment and
Security Challenges: A Review,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 10, pp. 183-195, 2017, doi:
10.14569/1JACSA.2017.081025.

[22] A. Hasan, “A Review Paper on DevOps Methodology,” Int. J. Creat. Res. Thoughts, vol. 8, no. 6, pp. 2320—
2882, 2020.

[23] M. Nazir, “Cloud Computing: Overview & Current Research Challenges,” IOSR J. Comput. Eng., vol. 8, no. 1,
pp. 14-22,2012, doi: 10.9790/0661/0811422.

[24] V. Shah, “Managing Security and Privacy in Cloud Frameworks: A Risk with Compliance Perspective for
Enterprises,” Int. J. Curr. Eng. Technol., vol. 12, no. 6, pp. 606618, 2022.

[25] S. Gupta, M. Bhatia, M. Memoria, and P. Manani, “Prevalence of GitOps, DevOps in Fast CI/CD Cycles,” in
2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-
CON), 2022, pp. 589-596. doi: 10.1109/COM-IT-CON54601.2022.9850786.

[26] A. M. Putra and H. Kabetta, “Implementation of DevSecOps by Integrating Static and Dynamic Security
Testing in CI/CD Pipelines,” in 2022 IEEE International Conference of Computer Science and Information
Technology (ICOSNIKOM), 2022, pp. 1-6. doi: 10.1109/ICOSNIKOMS56551.2022.10034883.

[27] A.J. A. Thobari, U. Sa’adah, F. F. Hardiansyah, and R. C. A. Putra, “Toolchain Development for Midcore
Scale Game Products through DevOps and CI/CD Approach,” in 2021 5th International Conference on
Informatics and Computational Sciences (ICICoS), 2021, pp. 81-86. doi: 10.1109/ICIC0S53627.2021.9651738.

[28] S. Garg, P. Pundir, G. Rathee, P. K. Gupta, S. Garg, and S. Ahlawat, “On Continuous Integration / Continuous
Delivery for Automated Deployment of Machine Learning Models using MLOps,” in 2021 [EEE Fourth
International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), 2021, pp. 25-28. doi:
10.1109/AIKES52691.2021.00010.

[29] F. Zhao, X. Niu, S.-L. Huang, and L. Zhang, “Reproducing Scientific Experiment with Cloud DevOps,” in
2020 IEEE World Congress on Services (SERVICES), 2020, pp. 259-264. doi:
10.1109/SERVICES48979.2020.00058.

[30] T. Rangnau, R. V. Buijtenen, F. Fransen, and F. Turkmen, “Continuous Security Testing: A Case Study on
Integrating Dynamic Security Testing Tools in CI/CD Pipelines,” Proc. - 2020 IEEE 24th Int. Enterp. Distrib.
Object Comput. Conf. EDOC 2020, pp. 145-154, 2020, doi: 10.1109/EDOC49727.2020.00026.

[31] U. Zdun, E. Ntentos, K. Plakidas, A. El Malki, D. Schall, and F. Li, “On the Design and Architecture of
Deployment Pipelines in Cloud- and Service-Based Computing - A Model-Based Qualitative Study,” in 2019
IEEE International Conference on Services Computing (SCC), 2019, pp. 141-145. doi:

10.1109/SCC.2019.00033.

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11978V 1376

o . [ssn
www.ijarsct.co.in | 2581-9429 |1

&\ IJARSCT ¥
Q

