
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 415

www.ijarsct.co.in

Impact Factor: 7.301

Low Power Implementation of Mitchells

Approximate Logarithimic Multiplication for

Convolutional Neural Networks
Kanuparthi Venkata Siva Prasad Reddy, Pamuluru Ganesh, Pala Mohan Sai, Gorla Prateesh

Department of Electronics and Communication Engineering

Prathyusha Engineering College, Thiruvallur, Tamil Nadu, India

Abstract: Approximate computing (AC) is an emerging paradigm that leverages the inherent error

tolerance of many applications—such as image recognition, multi- media processing, and machine

learning (ML)—to allow some accuracy to be traded off to save energy consumption. AC techniques can

be applied at both the circuit and/or architecture levels, possibly in coordination with software- level

techniques. Multiplication is one of the most resource- and power-hungry operations in many error-tolerant

computing applications, such as image processing, neural networks (NN), and digital signal processing

(DSP). In this research project, we focus on the design and implementation of hardware-efficient

approximate computing circuits, aiming to simplify the multiplication operation and/or to reduce the

number of required multiplications. Two 4×4 approximate multiplier designs are proposed in which

approximation is employed in the partial product reduction tree, the most expensive part of the design of

a multiplier. The two proposed designs are then used to construct larger approximate multipliers.

Multiplication is the computational bottleneck in NNs. For the first time, we attempt to find the critical

features in an approximate multiplier that make it superior to others for use in a NN. Inspired by the insight

that adding small amounts of noise can improve the performance of NNs, we replaced the ex- act

multipliers in two representative NNs with 600 approximate multipliers and then experimentally

measured the effect on classification accuracy. Interestingly, some approximate multipliers improved

the performance of NNs. Insight into which features of an approximate multiplier make it superior to

others in the NN applications was gained by training a statistical predictor that anticipates how well a

given approximate multiplier is likely to work in a NN application. In the logarithmic number system

(LNS) the multiplication operation is converted into simple shift and addition operations. We have

proposed a novel exact leading-one detector (LOD) to speed up the calculation of the base-2 logarithm of

the input operands to a logarithmic multiplier. In addition, since the logarithmic multipliers that use

LODs always underestimate the actual multiplication product, a nearest-one detector (NOD) is proposed

for a logarithmic multiplier that has a double-sided error distribution. Finally, we investigate the design

of multiply-accumulate (MAC) units. An approximate logarithmic MAC (LMAC) unit is proposed for the

first time. Furthermore, a soft-dropping low-power (SDLP) architecture is specifically designed for

convolutional neural networks (CNNs) that, unlike the existing accelerators that simplify the

multiplication/addition operations, reduces the number of required multiplications. The SDLP takes

advantage of the spatial dependence between the input image pixels and skips some of the

multiplications during the convolution operation and, thereby, reduces the energy consumption of the CNN

inference calculation

Keywords: Approximate computing

I. INTRODUCTION

The discontinuation of Dennard scaling and the fading of Moore’s law have motivated the coming forth of new devices,

architectures, and design techniques for computing. Nowadays, power and energy efficiency have become significant

design concerns for modern computing systems. On the other hand, current applications and workloads, such as image

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 416

www.ijarsct.co.in

Impact Factor: 7.301

processing, computer vision, graphics, machine learning, data mining, and financial and physical simulations, are part

of a set of applications classified as Recognition, Mining, and Synthesis, which have been reported as error-tolerant.

This means that even in the presence of deliberately introduced errors, these applications produce acceptable results as a

golden result does not exists, the application deals with noisy input data, or even it presents iterative refinement.

approximate computing techniques have been reported in the literature. Still, these show the need to exploit this design

paradigm to improve computation efficiency at all layers where computation occurs. Recent work has proposed to

exploit inherent resilience to errors in applications by using approximate accelerators. In general, hardware accelerators

have reported significant benefits for reducing energy consumption, and they have been used to overcome the

utilization wall challenge. In a nutshell, an accelerator is used to offload a highly-frequent and compute-intensive

section of an application to dedicated hardware, while a host processor executes the rest of the application. Accelerators

can be in the form of a GPU, a DSP, or a specialized FPGA design. From the approximate computing perspective,

approximate accelerators exploit error resilience as frequently-executed, but error-tolerant sections of an application are

performed by dedicated approximate hardware designs. One approach proposed is to implement these accelerators as

neural networks and take advantage of the approximate nature of the results produced by this computational model.

Another approach proposes the usage of approximate arithmetic circuits to replace exact calculations in hardware

accelerator designs. Nevertheless, many approximate adders and multipliers have been reported in the literature. For an

ongoing number of such approximate arithmetic circuits, and considering their usage in building approximate designs,

such as approximate accelerators, a question arises: given a design for an error-tolerant application and a set of

approximate components, which approximate arithmetic circuits

should be used to minimize the computational effort, for instance, the required area, delay, power, or energy, while

satisfying a defined accuracy? Traditional approaches required exhaustive synthesis and simulation of by-hand

designed approximate accelerators, which might be infeasible due to the large design space even considering a reduced

set of approximate arithmetic circuits. For instance, to satisfy accuracy constraints in these accelerators, required to

guarantee good enough results despite the on-purpose errors, it is imperative to assess how the errors introduced by

approximate circuits propagate through other exact and approximate computations, and finally accumulate at the output.

This is, in particular, crucial to enable the high-level synthesis of approximate accelerators. Bridging the gap between

many approximate arithmetic circuits and the automated design and implementation of approximate accelerators is

crucial to further enable cross-layer approximate computing.

1.1 Literature Survey

Approximate computing enables improvement in speed, reductions in area and power, and savings in energy compared

to accurate computing at the expense of an acceptable loss in the accuracy of results [1]. There are many practical

applications that are inherently error-resilient, and they have been considered as suitable candidates to evaluate the

efficacy and practicality of approximate computing. Examples of such practical applications include multimedia [2],

low-power graphics processing [3], memory for multi-core processors [4], the hardware implementation of neural

networks for machine learning and artificial intelligence [5], software engineering [6], memory storage [7], big data

mining and analytics [8], and neuromorphic computing [9]. Approximate computing broadly covers hardware,

software, and memory storage, and approximate hardware includes approximate arithmetic circuits [10] and

approximate logic circuits [11]. Within the domain of approximate arithmetic circuits, the design of approximate adders

and multipliers has attracted significant attention [12], which is understandable given that addition and multiplication

are frequently performed in microprocessors and digital signal processors. For example, in [13], it was found that

additions constituted nearly 80% of the operations in an ARM processor’s arithmetic and logic unit, and it was noted in

[14] that adders and multipliers contributed to about 80% of the total power consumption of a fast Fourier transform

processor.

This paper discusses approximate adders and multipliers. Approximate adders are categorized into two types: Static

Approximate Adders (SAAs) and Dynamic Approximate Adders (DAAs). SAAs have a fixed approximation, and they

could enable significant reductions in delay, area, and power compared to accurate adders for an increase in the

approximation. However, prior knowledge of the target application could be useful to determine an optimal

approximation for an SAA. On the other hand, DAAs have a flexible approximation and could be configured to produce

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 417

www.ijarsct.co.in

Impact Factor: 7.301

an approximate or accurate results on demand, i.e., the accuracy of results could be adjusted as per need and prior

knowledge about a target application may not be necessary. However, to achieve this, DAAs incorporate additional

error detection and correction logic to facilitate a variable approximation, which forms a design overhead. Furthermore,

multiple computational cycles might be required to achieve a result that corresponds to a desired accuracy in a DAA.

These two tend to negatively impact the design metrics of DAAs in general. In [15], for a digital video-encoding

application, it was observed that the savings in power achieved by an SAA over an accurate adder is comparable with a

DAA.

Many multiplier architectures such as Braun array, Booth algorithm, Wallace tree, Baugh Wooley algorithm, and the

Dadda tree are available for unsigned and signed multiplication [16]. These accurate multiplier architectures have been

modified to obtain approximate multiplier architectures in the literature [17]. With respect to unsigned multiplication,

and especially for small multiplications that are typically encountered in digital image processing, the Braun array

multiplier (BAM) [18] is preferable because it has a simple and regular structure. Moreover, BAM allows for easy

pipelining to increase the throughput as required. Approximate (array) multiplier architectures can be derived by

making vertical and/or horizontal cuts in an accurate BAM [19] and assigning different combinations of binary

constants to the dangling internal inputs and dangling product bits.

In this article, we describe Approximator, which is a software tool developed to automatically generate Verilog HDL

codes of approximate adders and multipliers of any size, corresponding to the following approximate arithmetic circuit

architectures proposed by us: approximate adders (HEAA [20], HOERAA [21], HOAANED [22], and M-HERLOA

[23]) and approximate (array) multipliers (AAM01 [24,25]). Though we proposed three approximate array multiplier

architectures in [24], among them AAM01 [25] (also called PAAM01 [24]) was found to have better optimized error

characteristics, and its superior performance was confirmed for a couple of digital image processing applications,

namely digital image denoising and digital image blending. Hence, we decided to only incorporate AAM01 into

Approximator. The approximate adder and multiplier architectures comprising Approximator correspond to static

approximation.

Approximator has been made open for access on GitHub for the benefit of the research community and a beta version

of the tool is available for free download [26]. Documentation about the tool is also provided for a user’s reference [27].

Approximator has been made available in a convenient graphical user interface (GUI) format for ease of use by an end-

user. Approximator asks for input specifications from a user to: (i) generate Verilog HDL codes of approximate adders,

(ii) generate Verilog HDL codes of approximate multiplier, (iii) perform error analysis of approximate arithmetic

circuits, and (iv) perform accuracy analysis of approximate arithmetic circuits.

The rest of the article is structured as follows. Section 2 and Section 3 describes the approximate adders and the

approximate (array) multiplier, respectively, which form a part of Approximator. Next, the development and working

principle of the GUI version of Approximator are described in Section 4 through some example screenshots. Finally,

Section 5 concludes the article

In inexact computing, approximate adders are the essential building block for the arithmetic circuits. Approximate

adders have inaccurate outputs for carry and sum with some combinations of inputs, which have incorrect outputs for

sum and carry. So, the hardware requirement of the system gets reduced for inexact computing. As a result,

approximate computing yields high speed and low power consumption for the design. However, approximate

computing is a suitable choice for DSP applications like video, image, and audio processing, where accurate results are

not essential. Adders are implemented by using various digital CMOS technologies (Ashim et al., 2016; Chip-Hong et

al., 2005) such as Transmission Gate Adder (TGA), Complementary Pass Transistor Logic (CPL), and (Uming et al.,

1995) Double Pass Transistor Logic (DPL) in order to reduce the power consumption of the design. High Performance

Error Tolerant Adders and Multiplexer based arithmetic full adders (MBAFA) are proposed (R. Jothin et al., 2018) to

reduce the design parameters such as area and power consumption and also to improve the accuracy. Various types of

approximate adders are proposed (Fazel Sharifi et al., 2017; Jeevan Jot Singh et al., 2018; Zhixi Yang et al., 2013;

Vaibhav Gupta et al., 2013), and their performance is analyzed based on the area, power, speed and accuracy of the

results. In Honglan Jiang et al. (2015), various types of approximate adder techniques are analyzed. Error and circuit

characteristics are compared. Equal segmentation Adder (ESA) is proposed, which results in better hardware efficiency,

but with the lowest accuracy in terms of error. The approximate full adders (AFA) are compared (Sunil Dutt et al.,

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT
www.ijarsct.co.in

Impact Factor: 7.301

2017) with the existing ripple carry adder (RCA) in terms of area and power. In Tongxin Yang et al. (2018), the

approximate adder is based on the carry lo

run time. It results in reduced power and delay and is used for error tolerant applications. Approximate adders are used

in data mining and multimedia signal processing, which can

4-2 compressor tree was proposed (J.Anjana et al., 2018), and one of the Xor gate is replaced by OR gate to reduce the

hardware requirement. Approximate multipliers are also designed (Kalvala et

approximate adders, which are used in image processing applications. Algorithmic noise Tolerant (ANT) schemes

(Rajamohana Hegde et al., 2001) are used to compensate the degradation of the algorithmic performance

dependent errors, and this error control scheme is used in soft DSP. Prediction based error control scheme was proposed

to improve the performance of the filtering algorithm even when the errors occurred due to the approximate

computation. Approximate computing was used in DCT image compression (Haider A.F.Almurib et al., 2018; S Geetha

and P Amritvalli. 2017). A set of images are compressed to analyze the different parameters such as delay, energy

consumption, and PSNR. Accurate adders (G. Nar

also designed, implemented, and analyzed for achieving the power efficiency and reducing the hardware requirement.

Section 2 depicts the existing approximate adder structures. Section 3 prese

structure. Section 4 provides the performance analysis of existing and proposed approximate adders. 1 Approximate

Arithmetic Circuits

As discussed in Chapter 1, with the coming forth of Approximate Computing (AxC)as an

design paradigm, many approximate arithmeticcircuits have been proposed, mainly approximate adders and multipliers.

A quick search in the Scopus database1shows more than 1400 publications related to AxC in the last decade, and ab

37%of those works correspond to approximate adders or multipliers. The main ideabehind this approximate circuits is

to perform the mathematical operations fasteror with less area, power, or energy than the accurate circuits while

introducingerrors in the results.In the literature, several methods have been proposed to generate approximatecircuits

from accurate descriptions, for instance, by transforming gate

non-critical circuit paths. However, the dominant trend has beento propose approximate designs directly from accurate

counterparts.

Other approximate arithmetic circuits have been proposed, for example, approximatedividers. However, this

dissertation focuses on approximate addersand m5

requiredmathematical operations for these applications. As it can be noticed, in most ofthese applications, excluding

SAD, 75% or more of the operations correspond toadditions and multiplications, and, for inst

as a significantoperation.As many approximate arithmetic circuits have been proposed, and are still beingproposed in

the community, this chapter does not cover them extensively. Althoughthe main idea is to reduce the complexity of

arithmetic circuits, some of the keyconcepts behind these approximate units are here mentioned. Extensiv approximate

adders. The first considers the substitution of 1

consumption of the addition. This type is knownas low

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

 DOI: 10.48175/IJARSCT-11268

2017) with the existing ripple carry adder (RCA) in terms of area and power. In Tongxin Yang et al. (2018), the

approximate adder is based on the carry look ahead adder, and accuracy is realized by masking the carry propagation at

run time. It results in reduced power and delay and is used for error tolerant applications. Approximate adders are used

in data mining and multimedia signal processing, which can tolerate error, and the exact computing is not necessary. A

2 compressor tree was proposed (J.Anjana et al., 2018), and one of the Xor gate is replaced by OR gate to reduce the

hardware requirement. Approximate multipliers are also designed (Kalvala et al., 2017; Suganthi et al., 2017) by using

approximate adders, which are used in image processing applications. Algorithmic noise Tolerant (ANT) schemes

(Rajamohana Hegde et al., 2001) are used to compensate the degradation of the algorithmic performance

dependent errors, and this error control scheme is used in soft DSP. Prediction based error control scheme was proposed

to improve the performance of the filtering algorithm even when the errors occurred due to the approximate

roximate computing was used in DCT image compression (Haider A.F.Almurib et al., 2018; S Geetha

and P Amritvalli. 2017). A set of images are compressed to analyze the different parameters such as delay, energy

consumption, and PSNR. Accurate adders (G. Narmadha et al., 2015 and 2016; Manickam Ramasamy et al., 2019) are

also designed, implemented, and analyzed for achieving the power efficiency and reducing the hardware requirement.

Section 2 depicts the existing approximate adder structures. Section 3 presents the proposed approximate adder

structure. Section 4 provides the performance analysis of existing and proposed approximate adders. 1 Approximate

As discussed in Chapter 1, with the coming forth of Approximate Computing (AxC)as an energy

design paradigm, many approximate arithmeticcircuits have been proposed, mainly approximate adders and multipliers.

A quick search in the Scopus database1shows more than 1400 publications related to AxC in the last decade, and ab

37%of those works correspond to approximate adders or multipliers. The main ideabehind this approximate circuits is

to perform the mathematical operations fasteror with less area, power, or energy than the accurate circuits while

he results.In the literature, several methods have been proposed to generate approximatecircuits

from accurate descriptions, for instance, by transforming gate-level representationsof the circuit or exploitingdelay in

he dominant trend has beento propose approximate designs directly from accurate

Other approximate arithmetic circuits have been proposed, for example, approximatedividers. However, this

dissertation focuses on approximate addersand m5-tap FIR filter. Figure 1 presents a profile of the

requiredmathematical operations for these applications. As it can be noticed, in most ofthese applications, excluding

SAD, 75% or more of the operations correspond toadditions and multiplications, and, for inst

as a significantoperation.As many approximate arithmetic circuits have been proposed, and are still beingproposed in

the community, this chapter does not cover them extensively. Althoughthe main idea is to reduce the complexity of

arithmetic circuits, some of the keyconcepts behind these approximate units are here mentioned. Extensiv approximate

adders. The first considers the substitution of 1-bit fulladder (FA) for simplified versions,aiming to reduce the power

the addition. This type is knownas low-power (LP) approximate adder. For instance, Figure 2 depicts

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 418

2017) with the existing ripple carry adder (RCA) in terms of area and power. In Tongxin Yang et al. (2018), the

ok ahead adder, and accuracy is realized by masking the carry propagation at

run time. It results in reduced power and delay and is used for error tolerant applications. Approximate adders are used

tolerate error, and the exact computing is not necessary. A

2 compressor tree was proposed (J.Anjana et al., 2018), and one of the Xor gate is replaced by OR gate to reduce the

al., 2017; Suganthi et al., 2017) by using

approximate adders, which are used in image processing applications. Algorithmic noise Tolerant (ANT) schemes

(Rajamohana Hegde et al., 2001) are used to compensate the degradation of the algorithmic performance due to input

dependent errors, and this error control scheme is used in soft DSP. Prediction based error control scheme was proposed

to improve the performance of the filtering algorithm even when the errors occurred due to the approximate

roximate computing was used in DCT image compression (Haider A.F.Almurib et al., 2018; S Geetha

and P Amritvalli. 2017). A set of images are compressed to analyze the different parameters such as delay, energy

madha et al., 2015 and 2016; Manickam Ramasamy et al., 2019) are

also designed, implemented, and analyzed for achieving the power efficiency and reducing the hardware requirement.

nts the proposed approximate adder

structure. Section 4 provides the performance analysis of existing and proposed approximate adders. 1 Approximate

energy- and accuracy-aware

design paradigm, many approximate arithmeticcircuits have been proposed, mainly approximate adders and multipliers.

A quick search in the Scopus database1shows more than 1400 publications related to AxC in the last decade, and about

37%of those works correspond to approximate adders or multipliers. The main ideabehind this approximate circuits is

to perform the mathematical operations fasteror with less area, power, or energy than the accurate circuits while

he results.In the literature, several methods have been proposed to generate approximatecircuits

level representationsof the circuit or exploitingdelay in

he dominant trend has beento propose approximate designs directly from accurate

Other approximate arithmetic circuits have been proposed, for example, approximatedividers. However, this

IR filter. Figure 1 presents a profile of the

requiredmathematical operations for these applications. As it can be noticed, in most ofthese applications, excluding

SAD, 75% or more of the operations correspond toadditions and multiplications, and, for instance, none have division

as a significantoperation.As many approximate arithmetic circuits have been proposed, and are still beingproposed in

the community, this chapter does not cover them extensively. Althoughthe main idea is to reduce the complexity of the

arithmetic circuits, some of the keyconcepts behind these approximate units are here mentioned. Extensiv approximate

bit fulladder (FA) for simplified versions,aiming to reduce the power

power (LP) approximate adder. For instance, Figure 2 depicts

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT
www.ijarsct.co.in

Impact Factor: 7.301

an 8-bitapproximate adder built from a Ripple

replaces the 1-bit additions of least significa

 (LSB) performed by a FA with a single OR gate. By doing so, for instance, the required area is reduced as fewer logic

gates are needed. Also, the circuit delay is reduced,

and power delay are reduced by about 35%, respectively, compared to an 8

adder is known as high-performance (HP) approximate adder. For this approxima

breaking the carry propagation chain of the exact addition and using multiple (sometimes overlapping) sub

generate the addition result, aiming to reduce the latency of the computation. Figure 3 depicts an exa

approximate adder. This adder, called Generic Accuracy Configurable adder, performs an N

sub-adders of smaller size. In this example, an 8

of the sub-adders are considered as resultant bits, and they are used in the actual result. The remaining P

previous bits, are used to estimate the carry propagation to the upper bits. As shown in Figure 2.3, only the sub

contributes with all its partial result to the final result, while sub

bit example reduces the delay in 40% with respect to an 8

1.2 Existing Systems

In R. Jothin et al. (2018), MBAFA1 and MBAFA2 have be

delay with minimum errors. MBAFA1 and MBAFA2 are shown in Figures 1 and 2, respectively, and are assumed as

Approximate 1 and 2. Adder has three inputs A, B, and C and two outputs sum and carry.

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

 DOI: 10.48175/IJARSCT-11268

bitapproximate adder built from a Ripple-Carry Adder (RCA). This adder, namedLower

bit additions of least significant bits.

Figure 1

Figure 2

(LSB) performed by a FA with a single OR gate. By doing so, for instance, the required area is reduced as fewer logic

gates are needed. Also, the circuit delay is reduced, as the carry propagation chain is cut. For this LOA example, area

and power delay are reduced by about 35%, respectively, compared to an 8-bit RCA. The second type of approximate

performance (HP) approximate adder. For this approximate adder, the addition is computed by

breaking the carry propagation chain of the exact addition and using multiple (sometimes overlapping) sub

generate the addition result, aiming to reduce the latency of the computation. Figure 3 depicts an exa

approximate adder. This adder, called Generic Accuracy Configurable adder, performs an N-

adders of smaller size. In this example, an 8-bit addition is done by three 4-bit adders. The most significant R

adders are considered as resultant bits, and they are used in the actual result. The remaining P

previous bits, are used to estimate the carry propagation to the upper bits. As shown in Figure 2.3, only the sub

th all its partial result to the final result, while sub-adder 2 and 3 provide 2 and 3 bits to the result. This 8

bit example reduces the delay in 40% with respect to an 8-bit RCA.

In R. Jothin et al. (2018), MBAFA1 and MBAFA2 have been designed to reduce the number of gates required and

delay with minimum errors. MBAFA1 and MBAFA2 are shown in Figures 1 and 2, respectively, and are assumed as

Approximate 1 and 2. Adder has three inputs A, B, and C and two outputs sum and carry.

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 419

Carry Adder (RCA). This adder, namedLower-part-OR adder (LOA),

(LSB) performed by a FA with a single OR gate. By doing so, for instance, the required area is reduced as fewer logic

as the carry propagation chain is cut. For this LOA example, area

bit RCA. The second type of approximate

te adder, the addition is computed by

breaking the carry propagation chain of the exact addition and using multiple (sometimes overlapping) sub-adders to

generate the addition result, aiming to reduce the latency of the computation. Figure 3 depicts an example of an HP

-bit addition using multiple

bit adders. The most significant R-bits

adders are considered as resultant bits, and they are used in the actual result. The remaining P-bits, known as

previous bits, are used to estimate the carry propagation to the upper bits. As shown in Figure 2.3, only the sub-adder 1

adder 2 and 3 provide 2 and 3 bits to the result. This 8-

en designed to reduce the number of gates required and

delay with minimum errors. MBAFA1 and MBAFA2 are shown in Figures 1 and 2, respectively, and are assumed as

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT
www.ijarsct.co.in

Impact Factor: 7.301

 (CNFET) in Fazel Sharifi et al. (2017) to reduce the power consumption, and its design in terms of gates was shown in

Figure 3. This design was assumed as Approximate 3.

In Jeevan Jot Singh et al. (2018), different types of inexact adders have been designed for image compression

techniques. These designs are taken as Approximate 4, Approximate 5, and Approximate 6 and are given in Figure 4,

Figure 5, and Figure 6 respectively. Approximat

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

 DOI: 10.48175/IJARSCT-11268

Figure 3

(CNFET) in Fazel Sharifi et al. (2017) to reduce the power consumption, and its design in terms of gates was shown in

Figure 3. This design was assumed as Approximate 3.

Figure 4

ngh et al. (2018), different types of inexact adders have been designed for image compression

techniques. These designs are taken as Approximate 4, Approximate 5, and Approximate 6 and are given in Figure 4,

Figure 5, and Figure 6 respectively. Approximate adder 4 incurs a smaller number of gates and reduces the chip size.

Figure 5

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 420

(CNFET) in Fazel Sharifi et al. (2017) to reduce the power consumption, and its design in terms of gates was shown in

ngh et al. (2018), different types of inexact adders have been designed for image compression

techniques. These designs are taken as Approximate 4, Approximate 5, and Approximate 6 and are given in Figure 4,

e adder 4 incurs a smaller number of gates and reduces the chip size.

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT
www.ijarsct.co.in

Impact Factor: 7.301

XNOR and XOR based adders have been designed in Zhixi Yang et al. (2013) to reduce the count of transistors and

power. The three types of adders are assumed here as Approximate.

Area efficient and low power approximate multipliers have also been designed in Suganthi et al. (2017) by using

approximate adder shown in Figure 10, which is assumed as

required for sum generation. To reduce the transistor count, one of the XOR gate is replaced by OR gate in sum

generation and carry was generated by using only one AND gate. High speed error tolerant adder

designed for image processing and multimedia applications (S Geetha et al., 2017) and is shown in Figure 11. This type

of adder is assumed as Approximate 11. These types of adders are used in Discrete Cosine Transform (DCT) and

Inverse Discrete Cosine Transform (IDCT) for image compression techniques.

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

 DOI: 10.48175/IJARSCT-11268

figure 6

XNOR and XOR based adders have been designed in Zhixi Yang et al. (2013) to reduce the count of transistors and

adders are assumed here as Approximate.

Figure 6

Area efficient and low power approximate multipliers have also been designed in Suganthi et al. (2017) by using

approximate adder shown in Figure 10, which is assumed as Approximate 10. In accurate adder, 2 XOR gates are

required for sum generation. To reduce the transistor count, one of the XOR gate is replaced by OR gate in sum

generation and carry was generated by using only one AND gate. High speed error tolerant adder

designed for image processing and multimedia applications (S Geetha et al., 2017) and is shown in Figure 11. This type

of adder is assumed as Approximate 11. These types of adders are used in Discrete Cosine Transform (DCT) and

rete Cosine Transform (IDCT) for image compression techniques.

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 421

XNOR and XOR based adders have been designed in Zhixi Yang et al. (2013) to reduce the count of transistors and

Area efficient and low power approximate multipliers have also been designed in Suganthi et al. (2017) by using

Approximate 10. In accurate adder, 2 XOR gates are

required for sum generation. To reduce the transistor count, one of the XOR gate is replaced by OR gate in sum

generation and carry was generated by using only one AND gate. High speed error tolerant adder has also been

designed for image processing and multimedia applications (S Geetha et al., 2017) and is shown in Figure 11. This type

of adder is assumed as Approximate 11. These types of adders are used in Discrete Cosine Transform (DCT) and

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 422

www.ijarsct.co.in

Impact Factor: 7.301

II. NEURAL NETWORKS

NNs process information in an entirely different way than a conventional (von Neumann) computer [19]. Weights

are adjusted in the neurons of a NN to allow the NN to perform certain computations (e.g., pattern recognition

and classification on vectors or arrays of input values) [20]. Note that the neurons in a NN are arranged in several

layers including an input layer, a variable number of hidden layer(s) (of the same or different types) followed by

an output layer. The neurons within the same layer process inputs from the earlier layer in parallel. The outputs

from the output layer are often used to signal the likelihood of membership in two or more disjoint classes. As

experience is being gained in machine learning tasks, diverse types of hidden NN layers have been proposed. The

authors i n [21] employed convolutional layers that function as local filters to data from the previous layers.

Other commo n types of hidden layers are the average and max pooling layer that are used for weighted sub-

sampling [22]. More recently, s e v e r a l application-specific layers have been proposed for image classification [23],

seg mentation [24] and speech processing [25].

Figure 2.2: Model of an artificial neuron

Artificial neuron

Neurons are the main processing units of NNs that compute a weighted sum of their inputs and then send the result

through an activation function (AF). The AF introduces non-linearity into a NN’s behaviour and maps the resulting

output values either into either the interval (-1, 1) or (0, 1) [8]. The AF can be either a hard-limiting function (e.g., a

step function) or a soft-limiting function (e.g., a sigmoid function) [26].

Fig. 2.2 shows the structure of an artificial neuron. A neuron has n ≥ 2 inputs (depending on the network structure) and

one output. Each input xi is multiplied by its corresponding synaptic weight wi, i = 0, 1, ..., n. An adder tree is then used

to sum up the products. The resulting sum is then input to the AF. An external bias b is often included to increase or

lower the sum that is the input to the AF [20].

Feed-forward neural networks

The two major operating modes for NNs are training and inference. The training process is usually performed

infrequently and off-line and, therefore, its energy consumption is less of a concern [26]. The inference process, on the

other hand, is done frequently. Although it is less computation-intensive than the training process, inference still

requires significant computation for large networks. Note that a trained network can be retrained and used to perform a

different tack on a different dataset. Usually only a few steps of retraining are required to fine-tune the pre-trained

network for another problem. Fig. 2.3 shows a feed-forward NN with n, k, and m neurons in the input, hidden, and

output layers, respectively.

Figure 2.3: Structure of a feed-forward NN.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 423

www.ijarsct.co.in

Impact Factor: 7.301

Convolutional neural networks

CNNs are a class of deep neural networks, which are mainly used to analyze visual imagery [6], [27], [28]. CNNs

are feed-forward neural networks consisting of a pipeline of layers. Each layer inputs a set of data, known as a

feature map (FM), and produces a new set of FMs with higher-level semantics [6]. The four main computations

involved in the major types of a typical CNN layers are:

1. Convolutional layer: A convolutional layer applies a set of trained con- volution filters Θ to a set of input

volumes Xconv (i.e., a color image in the case of the first convolutional layer or an output generated by previous

layers in the network) and outputs a set of FMs, Y conv. The computations involved in a convolutional layer are

thus:

 Y
conv

= conv(X
conv

, Θ) + β[n] (2.7)

where β denotes the trained bias term. Note that during convolution, the kernel Θ slides across the whole range of

Xconv.

2. Activation layer: A convolutional layer is usually followed by an activa- tion layer that applies a non-linear

function to all of the FM’s values. The most common activation function, which is also used in this work, is the

rectified linear unit (ReLU) that implements Y act = max(0, Xact) [23], where Xact denotes the input to this

layer.

3. Pooling layer: A pooling layer sub-samples the output of the convolution layer and reduces the spatial

dimension by discarding irrelevant detail [29]. The intuitive reasoning behind this layer is that the exact

location of a specific feature (which is extracted in the convolution layer) is not as important as its location

relative to the other features [30]. The typical pooling layers are the maximum and average pooling layers, which

produce almost identical results [29]. The average pooling layer, which slides over the input to this layer and

outputs the average of every sub- region that the filter convolves around, is used in this research study.

4. Fully-connected layer: The fully-connected layers are usually form the last few layers of a CNN. A fully-

connected layer takes the output of the previous layer (i.e., the activation maps of high-level features) and

determines which features most strongly correlate to a particular class

Fig. 2.4 shows an illustrative example of the feed-forward propagation in the convolution and activation layers. The

bias is omitted in Fig. 2.4 for sim- plicity. Parameter N in this figure indicates the number of filters.

The computational workload of a CNN inference is the result of an intensive use of the multiply-accumulate (MAC)

operations. Most of these MACs occur in the convolutional layers and, therefore, convolutional layers are

responsible more than 90% of execution time during the inference [31]

Figure 2.4: Feed-forward propagation i n convolutional and activation layers.

2.2. Image Processing Application

The performance of approximate adders was evaluated based on a digital image processing (DIP) application. Digital

images of 512 × 512 pixels, with a grayscale resolution of 8 bits were used for experimentation. Fast Fourier transform

(FFT) was performed on the images and then inverse FFT (IFFT) was performed to reconstruct the images following

the procedure in [28]. Integer FFT and IFFT operations were performed. In the FFT and IFFT computations,

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 424

www.ijarsct.co.in

Impact Factor: 7.301

multiplications were accurately performed, while additions were accurately and approximately performed, separately,

to compare the performance of accurate and approximate adders.

In general, the savings in design metrics achieved by an SAA compared to the accurate adder are proportionate to the

degree of incorporated approximation [21,22]. Therefore, an optimum approximation has to be determined to strike an

acceptable compromise between maximizing the savings in design metrics and ensuring the good quality of results

(here, the quality of DIP results). Based on an extensive trial-and-error, a 32-bit approximate adder comprising a 10-bit

inexact part was found to be acceptable for the DIP application [22], and this was adopted for this work. The images

reconstructed using different approximate adders such as LOA [19], LOAWA [29], APPROX5 [30], HEAA, OLOCA

[31], HOERAA, HOAANED, HERLOA [32], and M-HERLOA were compared with the original image on the basis of

two well-known figures of merit, namely the peak signal to noise ratio (PSNR) [33] and the structural similarity index

metric (SSIM) [34]. PSNR (in dB) varies from zero to infinity, and SSIM varies from 0 to 1 decimal. A higher PSNR

indicates low noise or distortion, and a higher SSIM indicates greater structural similarity between the reference

(original) image and the target image. The image reconstructed using the accurate adder had a PSNR of infinity and

SSIM of 1 since no noise was introduced in the accurate computation of FFT and IFFT, and the original image was

faithfully reconstructed. On the contrary, the images reconstructed using approximate adders did not have ideal PSNR

and SSIM values since noise was introduced during the approximate computation of FFT and IFFT. Figure 2, Figure

3 and Figure 4 show example DIP results obtained for ‘lena’, ‘cameraman’, and ‘woman with dark hair’ images.

Figure 2. Image processing result for ‘lena’ image obtained using accurate and approximate adders:

2.3 Proposed Multiplier

Several 4:2 compressors are required to implement one 4× 4 multiplier. How- ever, the function of an exact 4:2

compressor can be approximated to reduce the hardware cost. Ignoring Cout (due to its small impact on the

compressor’s accuracy [54]) as well as our goal to use as few gates as possible led to the approximate

compressor truth table given in Table 3.2.

As shown in Table 3.2, there are five/seven incorrect values for the approximate Carry/Sum outputs w h i c h

correspond to an output error. To reduce this source of inaccuracy, we encode the inputs to the compressor using

conventional propagate and generate signals given by:

 P(i,j) = pp(i,j) + pp(j,i), G(i,j) = pp(i,j).pp(j,i

X1

x1

X2

x2

X3

x3

X4

x4

Carry

Exact / Approximate

Sum

Exact / Approximate

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 425

www.ijarsct.co.in

Impact Factor: 7.301

0 0 0 0 0/0 ✓ 0/0 ✓
0 0 0 1 0/0 ✓ 1/1 ✓

0 0 1 0 0/0 ✓ 1/1 ✓

0 0 1 1 1/1 ✓ 0/1 ✗

0 1 0 0 0/0 ✓ 1/1 ✓

0 1 0 1 1/0 ✗ 0/1 ✗

0 1 1 0 1/0 ✗ 0/1 ✗

0 1 1 1 1/1 ✓ 1/1 ✓

1 0 0 0 0/0 ✓ 1/1 ✓

1 0 0 1 1/0 ✗ 0/1 ✗

1 0 1 0 1/0 ✗ 0/1 ✗

1 0 1 1 1/1 ✓ 1/1 ✓

1 1 0 0 1/1 ✓ 0/1 ✗

1 1 0 1 1/1 ✓ 1/1 ✓

1 1 1 0 1/1 ✓ 1/1 ✓

1 1 1 1 0/1 ✗ 0/1 ✗

encoding ensures that, a l though the approximate c i rcui t may have a fairly large number of faulty output entries

in the truth table, it in fact rarely produces those outputs. To see how this approach affects the compressor’s

accuracy, consider Stage 2 in which the following terms are added: pp2,0, pp1,1Table 3.2: Truth table of the

proposed approximate compressor.

Approximate Sum = (x1 + x2) + (x3 + x4)

 Approximate Carry = (x1.x2) + (x3.x4)

pp0,2, and c1. Table 3 . 3 , where N A stands for Not Applicable, shows how encoding the PPs using (3.2) helps to

improve the design accuracy compared to the situation in Table 3.2. Note that all possible input combinations for

the 4×4 multiplier were considered (24 × 24 = 256) to obtain the probability of each input combination shown in

Table 3.3.

Using the proposed technique, the number of faulty Carry/Sum values is reduced from 5/7 to 2/4. Note that the two

approximated cases for the Carry signal occur only with a small probability of 0.078 (0.0624+0.0156), see

Table 3.3. It is also worth mentioning that the following combinations in Table 3.3 cannot occur, so they do not

contribute to the output errors for the approximate compressor:

• (0,1) for (pp(1,1), c1): since c1 = pp(0,1).pp(1,0) = (α0.β1).(α1.β0), c1 = ‘1’ means that α0, β1, α1, and β0

are ‘1’. Consequently, pp(1,1) = α1.β1 = 1. Hence, it is impossible to have the (0,1) combination for (pp(1,1), c1).

III. HARDWARE IMPLEMENTATION TECHNOLOGIES

The construction of a typical real-time imaging or video embedded system is usually an integration of a range of

electronic devices, e.g. image acquisi- tion device, signal processing units, memories, and a display. Driven by the

market demand to have faster, smarter, smaller and more interconnected prod- ucts, designers are under greater pressure

to make decisions on selecting the appropriate technologies in each one of the devices among many of the alter- natives.

Trade-offs are constantly made concerning e.g. cost, speed, power, and configurability. In this chapter, a brief overview

of the varied alternative technologies is given along with elaborations on the plus and minus sides of each of the

technologies, which motivates the decisions made on the selection of the right architecture for each of the devices used

in the projects.

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT
www.ijarsct.co.in

Impact Factor: 7.301

3.1 ASIC vs. FPGA

The core devices of an real-time embedded system are composed of one or several signal processing units implemented

with different technologies such as Micro

General Purpose Processors (GPPs/RISCs), Field Programmable G

Integrated Circuits (ASICs). A comparison is made for the areas where each of these technologies prevails [2], which is

a bit biased to DSPs. This is shown in Table 2.1. No perfect technology exists that is compe

balanced embedded system design, a combination of some of the alternative technologies is a necessity. In general, an

embedded system design is initiated with Hardware/Software partitioning, once the original specifications are set

under various system requirements.

Speed In terms of maximum achievable clock frequency, ASICs are typically much faster than an FPGA given the

same manufacture process technol- ogy. This is mainly due to the interconnect architecture within FPGAs.

Speed In terms of maximum achievable clock frequency, ASICs are typically much faster than an FPGA given the

same manufacture process technol- ogy.

Table 2.1: Comparisons of

Performance

ASIC Excellent

FPGA Excellent

DSP Excellent

RISC Good

MCU Fair

The partitioning is carried out by eith

simulated annealing [3] or tabu s

GPPs/RISCs) for features and flexib

are critical regarding timing constrain

accelerated and optimized by custo

implementation technologies are discu

With the full freedom to customize

can achieve much better system perf

structure of logic blocks building, the

logic integration, etc. In general, des

spectrum of logic cells with varied

FPGAs with the aim of full flexibili

interconnects. A typical structure of

programable logic components and in

up tables and the configuration SRA

comes at the cost of speed, power, size,

Figure 7 Simplified progra

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

 DOI: 10.48175/IJARSCT-11268

bedded system are composed of one or several signal processing units implemented

with different technologies such as Micro-controller units (MCUs), Application Specific Signal Processors(ASSPs),

General Purpose Processors (GPPs/RISCs), Field Programmable Gate Arrays (FPGAs) and Application Specific

Integrated Circuits (ASICs). A comparison is made for the areas where each of these technologies prevails [2], which is

a bit biased to DSPs. This is shown in Table 2.1. No perfect technology exists that is compe

balanced embedded system design, a combination of some of the alternative technologies is a necessity. In general, an

embedded system design is initiated with Hardware/Software partitioning, once the original specifications are set

Speed In terms of maximum achievable clock frequency, ASICs are typically much faster than an FPGA given the

ogy. This is mainly due to the interconnect architecture within FPGAs.

eed In terms of maximum achievable clock frequency, ASICs are typically much faster than an FPGA given the

ogy.

f different types of signal processing units. Sources

Price Power Flexibility

Excellent 1 Good Poor

Poor Fair Excellent

Excellent Excellent Excellent

Fair Fair Excellent

Excellent Fair Excellent

her a heuristic approach or by a certain kind of opt

search [4]. Software is executed in processors (

bility, while dedicated hardware are used for parts

nts. With the main focus of the thesis being on the

om hardware for better performance and power,

cussed in the following sections.

 the hardware to the very last single bit of logic,

formance compared to other technologies. However,

ey posses quite different metrics in areas such as

signs implemented with ASIC technology is opti

ied sizes and strengths, along with dedicated inter

ility are composed of programmable logic compon

 an FPGA is illustrated in figure 2.1. Figure 2.2 and

nterconnects. Logic blocks can be formed on site th

AMs which control the routing resources. The prog

ize, and cost, which is discussed in details in the fo

rogrammable logic elements in an typical FPGA arc

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 426

bedded system are composed of one or several signal processing units implemented

controller units (MCUs), Application Specific Signal Processors(ASSPs),

ate Arrays (FPGAs) and Application Specific

Integrated Circuits (ASICs). A comparison is made for the areas where each of these technologies prevails [2], which is

a bit biased to DSPs. This is shown in Table 2.1. No perfect technology exists that is competent in all areas. For a

balanced embedded system design, a combination of some of the alternative technologies is a necessity. In general, an

embedded system design is initiated with Hardware/Software partitioning, once the original specifications are settled

Speed In terms of maximum achievable clock frequency, ASICs are typically much faster than an FPGA given the

ogy. This is mainly due to the interconnect architecture within FPGAs.

eed In terms of maximum achievable clock frequency, ASICs are typically much faster than an FPGA given the

s are from [2].

Time to

market

Fair

Good

Good

Excellent

Excellent

timization algorithm, e.g.

s (DSPs, MCUs, ASSPs,

ts of the algorithm which

the blocks that need to be

 only ASIC and FPGA

 both ASICs and FPGAs

, as they differ in the inner

 speed, power, unit cost,

imized by utilizing a rich

rconnection. In contrast,

nents and programmable

nd 2.3 show the details of

hrough programming look

ogrammability of FPGAs

ollowing.

chitecture.

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT
www.ijarsct.co.in

Impact Factor: 7.301

Figure 8 Confi

Table 2: C

To ensure programmability, many F

dynamically, see figure 2.3. These ac

the length of each wire is fixed to

exploited on the wire length even when

even worse if high logic utilization

within certain regions. As a result, p

path. In contrast, ASICs has the facili

layers, which can even route over log

granu- larity. In order to achieve prog

inputs. Any logic function with sligh

again introduce additional routing a

logic gates of varying functionality and d

the department), logic functions ca

constraint.

Power The active routing in FPGA de

capacitance. Combined with large

Clock speed

Power

Unit cost with vo

Logic Integration

Flexibility

Back-end Design E

Integrated Featur

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

 DOI: 10.48175/IJARSCT-11268

nfigurable routing resources controlled by SRAMs.

ble 2: Comparisons between ASICs and FPGAs.

y FPGA devices utilize pass transistors to conn

ctive routing resources add significant delays to sig

to either short, medium, and long types. No furt

when two logic elements are very close to each other.

 is encountered, in which case it is difficult to

physically adjacent logic elements do not necessar

cility to utilize optimally buffered wires imple- me

ogic cells. Another contributor to FPGAs speed deg

ogrammability, look-up tables are used which usually h

htly more input variables will take up additional lo

and delay. On the contrary, ASICs, usually with a

nd drive strength (e.g. over 500 types for UMC 0.1

an be very fine tuned during synthesis process to

GA devices does not only increase signal path delays

 capaci- tances caused by the fixed interconn

ASICs FPGAs

Low High

olume production Low High

n High Low

Low High

Effort High Low

res Low High

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 427

.

nnect different logic cells

gnal paths. Furthermore,

ther optimization can be

. The situation could get

to find a appropriate route

ssarily get a short signal

ented with metal in many

gradation lies in its logic

lly have a fixed number of

ook-up tables, which will

a rich spectrum types of

13 µm technology used at

to meet a better timing

ys, it also introduce extra

nnection wire length, the

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 428

www.ijarsct.co.in

Impact Factor: 7.301

capacitance in FPGA signal path is in general several times larger than that of an ASIC. Substantial power

consumption is dissipated during signal switching that drives such signal paths. In addition, FPGAs have pre-

made dedicated clock routing resources, which are connected to all the flip flops on an FPGA in the same

clock domain. The capacitance of the flip flop will contribute to the total switching power even when it is not

used. Fur- thermore, the extra SRAMs used to program look-up tables and wires also consume static power.

Logic density The logic density on an FPGA is usually much lower compared to ASICs. Active routing device

takes up substantial chip area. Look-up tables waste logic resource when they are not fully used, which is also

true for flip-flops following each look-up table. Due to relatively low logic density, around 1/3 of large ASIC

designs in the market usually could not fit into one single FPGA [5]. Low logic density increase the cost per unit

chip area, which makes ASIC design more preferable for industry designs in mass production.

Despite of all the above drawbacks, FPGA implementation also comes with quite a few advantages, which is

served as the motivation in the thesis work.

Verification Ease Due to its flexibility, an FPGA can be re-programmed as requested when a design flaw is

spotted. This is extremely useful for video projects, since algorithms for video applications usually need to be

verified over a long time period to observe long term effects. Computer simulations are inherently slow. It

could take a computer weeks of time to simulate a video sequences lasting for only several minutes. Besides, an

FPGA platform is also highly portable compared to a computer, which makes it more feasible to use in

heterogeneous environments for system robustness verification.

Design Facility Modern FPGAs comes with integrated IP blocks for design ease. Most importantly,

microprocessors are shipped with certain FP- GAs, e.g. (hard Power PC and soft Microblaze processor cores on

Virtex II pro and later version of Xilinx FPGAs). This gives great benefit to hardware/software co-design,

which is essential in the presented video surveillance project. Algorithm such as feature extraction and

tracking is more suitable for software implementation. With the facilitation of various FPGA tools, interaction

between software and hardware can be verified easily in an FPGA platform. Minor changes in hardware/software

partitioning are easier and more viable compared to ASICs.

Minimum Effort Back-end Design The FPGA design flow eliminates the complex and time-consuming

floor planning, place and route, timing anal- ysis, and mask/re-spin stages of the project, since the design logic

is al- ready synthesized to be placed onto an already verified, characterized FPGA device. This will facilitate

hardware designers more time to con- centrate mainly on architecture and logic design task.

From the discussions above, FPGAs are selected as our implementation technology due to its fair performance and

all the flexibilities and facilities.

Dynamic Range CCD High CMOS Moderate

Speed Moderate High

Windowing Limited Extensive

Cost High Low

Uniformity High Low to moderate

System Noise Low High

Table 2.3: Image sensor technology comparisons: CCD vs. CMOS.

An image sensor is a device that converts light intensity to an electronic signal. They are widely used among

digital cameras and other imaging devices. The two most commonly used sensor technologies are based on

Charge Coupled De- vices (CCD) or Complementary Metal Oxide Semiconductor(CMOS) sensors. Descriptions

and comparisons of the two technologies are briefly discussed in the following which are based on [6–8]. A

summary of the two sensor types is given in Table 2.3. Both devices are composed of a array of fundamental

light sensitive elements called photodiodes, which excite electrons (charges)

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT
www.ijarsct.co.in

Impact Factor: 7.301

When there is light with enough ph

electron is linear so that one photo

world. Typical image sensors intende

measures the light intensity by accum

enough charges are gathered and ready

basic photodiode structure, they m

procedure, signal amplification, and A

figure 2.4 and CCD sensors read out

row are coupled to the row above, s

the row above will fill the current po

a time to the readout registers, whe

converter. The signal coming out of the

Figure

Figure 10

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

 DOI: 10.48175/IJARSCT-11268

photons striking on it. In theory, the trans- for

on would release one electron. In general, this is

ed for digital cameras will release less than one elec

mulating light incident for a short period of time

dy to be read out. While CCD and CMOS sensors

mainly differs in the way how these charges are p

AD conver- sion. The inner structures of the two de

t charges in a row-wise manner: The charges on each

so when the charges are moved down to the row b

osition, thus the name Coupled Charged Device. The

where the charges are shifted out serially throu

the chip is a weak analog signal, therefore an extra

Figure 9 A typical CCD image sensor architecture.

10 A typical CMOS image sensor architecture

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 429

rmation from photon to

 not the case in the real

electron. The photodiode

 (integration time), until

 are quite similar in these

e processed, e.g. readout

devices are illustrated in

h

below, new charges from

ice. The CCD shifts one row at

ugh a charge- to-voltage

 off-chip amplifier

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 430

www.ijarsct.co.in

Impact Factor: 7.301

Board (PCB) which results in a higher cost. On the chip level, although CMOS sensor can be manufactured

using a foundry process technology that is also capable of producing other circuits in volume, the cost of the

chip is not considerable lower than a CCD. This is due to the fact that special, lower volume, optically adapted

mixed-signal process has to be used by the requirement of good electro-optical performance [6].

Image Quality The image quality can be measured in many ways:

Noise level CMOS sensors in general have a higher level of noises due to the extra circuits introduced. This

can be compensated to some extent by extra noise correction circuits. However this could also increase the

processing time between frames.

Uniformity CMOS sensors use separate amplifier for each pixel, the offset and gain of which can vary due to

wafer process variations. As a result, the same light intensity will be interpreted as different value. CCD sensor

with an off-chip amplifier for every pixel, excel in uniformity.

Light Sensitivity CMOS sensors are less sensitive to light due to the fact that part of each pixel site are not

used for sensing light but for processing. The percentage of a pixel used for light sensing is called fill factor,

which is shown in figure 2.2. In general, CCD sensors have a fill factor of 100% while CMOS sensor has much

less, e.g. 30% − 60% [9]. Possibly, such a drawback can be partially solved by adjusting integration time of each

pixel. Speed and Power In general, a CMOS sensor is faster and consumes lower power compared to a CCD.

Moving auxiliary circuits on chip, parasitic capacitance is reduced, which increase the speed at the same time

con- sumes less power.

Windowing The extra row and column decoders in CMOS sensors enable data reading out from arbitrary

positions. This could be useful if only portion of the pixel array is of interest. Reading out data with using

different resolution is made easy on CMOS sensor without having to discard pixels outside the active window as

compared to a CCD sensor.

IV. HARDWARES AND SOFTWARE

4.1 Introduction

The electronics industry has achieved a phenomenal growth over the last two decades mainly due to the rapid advances

in integration technologies, large-scale systems design – in short, due to the advent of VLSI. Typically,the required

computational power of these applications is the driving force for the fast development for this field. One of the most

important characteristics of information service is their increasing need for very high processing power and bandwidth.

The other important characteristics is that the information services tend to become more and more personalized,which

means that the devices must be more intelligent to answer individual demands,and at the same time they must be

portable to allow more flexibility and mobility. More complex function are required in various data processing and

telecommunications devices,the need to integrate these functions in a small system,packages is also increasing.

The level of integration as measured by the number of logic gates in a monolithic chip has been steadily rising for

almost three decades,mainlydue to the rapid progress in processing technology and interconnect technology.

The monolithic integration of large number of functions on a single chip usually provides

1.Less area/volume and therefore compactness.

2. Less power consumption.

3. Less testing requirements at system level.

4. High reliability,mainly due to improve on-chip interconnects.

5. High speed,due to significantly reduced interconnection length.

6. Significant cost saving.

Therefore,the current trend of integration will also continue in the future. Advances in devices manufacturing

technology and especially the steady reduction of minimum feature size support the trend. A minimum size of 0.25

microns was readily achieved. Logic chip such as microprocessor chips and digital signal processing chips contain not

only large array of memory(SRAM) Cells, but also many different functional units. As a result, their design complexity

is considered much higher than that of memory chips. Sophisticated computer-aided design tools and methodologies are

developed and applied in order to manage the rapidly increasing design complexity.

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT
www.ijarsct.co.in

Impact Factor: 7.301

4.2 VLSI DESIGN FLOW

Fig 2.1 provides the most simplified view of the VLSI design flow,taking into account the various representation or

abstraction of design-behavioral,logic circuit and mask layout. Note that the verification of design plays a very

important role in every step during this process.

Although top-down design flow provides an excellent process control,in reality,there is no truly unidirectional top

down design. Both top-down and bottom

architecture without close estimation of the corresponding chip area then it is very likely that the resulting chip layout

exceeds the area limit of the available technology. In such a case,in order to fit the architecture into the allowable chip

area,some functions have to be removed and the design process must be repeated.

Such changes may require significant modification of the original requirement. Thus it is very important to feed

forward low-level information to higher level as early as possible.

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

 DOI: 10.48175/IJARSCT-11268

Fig 2.1 provides the most simplified view of the VLSI design flow,taking into account the various representation or

behavioral,logic circuit and mask layout. Note that the verification of design plays a very

ep during this process.

down design flow provides an excellent process control,in reality,there is no truly unidirectional top

down and bottom-up approaches have to be combined. For instance, is a chip designer defined

rchitecture without close estimation of the corresponding chip area then it is very likely that the resulting chip layout

exceeds the area limit of the available technology. In such a case,in order to fit the architecture into the allowable chip

functions have to be removed and the design process must be repeated.

Such changes may require significant modification of the original requirement. Thus it is very important to feed

level information to higher level as early as possible.

Figure 11 VLSI Design Flow

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 431

Fig 2.1 provides the most simplified view of the VLSI design flow,taking into account the various representation or

behavioral,logic circuit and mask layout. Note that the verification of design plays a very

down design flow provides an excellent process control,in reality,there is no truly unidirectional top-

up approaches have to be combined. For instance, is a chip designer defined

rchitecture without close estimation of the corresponding chip area then it is very likely that the resulting chip layout

exceeds the area limit of the available technology. In such a case,in order to fit the architecture into the allowable chip

Such changes may require significant modification of the original requirement. Thus it is very important to feed

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 432

www.ijarsct.co.in

Impact Factor: 7.301

4.3 FPGA INTRODUCTION

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by the designer after

manufacturing-hence “field-programmable”.The FPGA configuration is generally specified using a hardware

description language (HDL), similar to that used for an application-specific integrated circuit (ASIC). FPGAs can be

used to implement any logical function that an ASIC could perform. The ability to update the functionality after

shipping partial re-configuration of the portion of the design and the low non-recurring, engineering costs relative to an

ASIC design(notwithstanding the generally higher unit cost), offer advantages for many applications.The gate

array where the logic network can be programmed into the device after its manufacture. An FPGA consists of an array

of logic elements, either gates or lookup table RAMs, flip-flops and programmableinterconnectwiring.

Most FPGAs are reprogrammable, since their logic functions and interconnect are defined by RAM cells. The Xilinx

LCA, Altera FLEX and AT&TORCA devices are examples. The Actel FPGAs are the leading example of such devices.

Atmel FPGAs are currently (July 1997) the only ones in which part of the array can be reprogrammed while other parts

are active. As of 1994, FPGAs have logic capacity up to 10K to 20K 2-input-NAND-equivalent gates, up to about 200

I/O pins and can run at clock rates of 50 MHz or more. FPGA designs must be prepared using CAD software tools,

usually provided by the chip vendor, to do technology mapping, partitioning and placement, routing, and binary output.

The resulting binary can be programmed into a ROM connected to the FPGA or downloaded to the FPGA from a

connected computer. In addition to ordinary logic applications, FPGAs have enabled the development of logic

emulators There is also research on using FPGAs as computing devices, taking direct advantage of their re-

configurability into problem-specific hardware processors.

Figure 12 FPGA Logic block

FPGAs contain programmable logic components called “logic blocks” and a hierarchy of reconfigurable interconnects

that allow the blocks to be “wired together” (changeable) logic gates that can be inter-wired in different configurations.

Logic blocks can be configured to perform complex combinational functions or merely simple logic gates like AND

and XOR. In most FPGAs logic blocks also include memory elements which may be simple flip-flops (FF) or more

complex blocks of memory.In addition to digital functions, some FPGAs have analog features.

The most common analog feature is programmable slew rate and drive strength on each output pin, allowing the

engineer to set slow rates on lightly loaded pins that would otherwise ring unexpectedly, and to set stronger, faster rates

on heavily loaded pins on high speed channels that would otherwise run too slow. Another relatively common analog

feature is differential comparators on input pins designed to be connected to differential signaling channels.

A few “mixed signal FPGAs” have integrated peripheral Analog-Digital converters (ADCs) and Digital-to-Analog

Converters (DACs) with analog signal conditioning blocks allowing them to operate as a system-on-a-chip. Such

devices blur the line between an FPGA which carries digital ones and zeros on its internal programmable interconnect

fabric, and field-programmable analog array (FPAA), which carries analog values on its internal programmable

interconnect fabric.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 433

www.ijarsct.co.in

Impact Factor: 7.301

4.3.1 APPLICATIONS

Applications of FPGAs include digital signal processing, software-defined radio, aerospace and defense systems, ASIC

prototyping, medical imaging, computer vision, speech recognition, cryptography, bioinformatics, computer hardware

emulation, radio astronomy, metal detection and a growing range of other areas. With the introduction of dedicated

multipliers into FPGA architectures in late 1990s, applications which had traditionally been the sole reserve of DSPs

began to incorporate FPGAs instead.

Traditionally, FPGAs have been reserved for specific vertical applications where the volume of production is small. For

these low volume applications, the premium that company pay in hardware costs per unit for a programmable chip is

more affordable than the development resources spent on creating an ASIC for a low-volume application. Today new

cost and performance dynamics have broadened the range of viable applications.

4..3.2 ARCHITECTURE

The most common FPGA architecture consists of an array of logic blocks (called Configurable Logic Block, CLB, or

Logic Array Block, LAB, depending on vendor), I/O pads, and routing channels. Generally, all the routing channels

have the same width (number of wires). Multiple I/O pads may fit into the height of one row or the width of one column

in the array.An application circuit must be mapped into an FPGA with adequate resources. While the number of

CLBs/LABs and I/Os required is easily determined from the design, the number of routing tracks needed may vary

considerably even among designs with the same amount of logic. For example, a crossbar switch requires much more

routing than asystolicarray with the same gate count. Since unused routing tracks increase the cost (and decrease the

performance) of the part without providing any benefit, FPGA manufacturers try to provide just enough tracks so that

most designs that will fit in terms of Lookup tables (LUTs) and I/Os can be routed. Together, they control over 80

percent of the market.

Other competitors include Lattice Semiconductor (SRAM based with integrated configuration flash, instant-on, low

power, live reconfiguration), Actel (now Microsemi, antifuse, flash-based, mixed-signal), Silicon Blue

Technologies (extremely low power SRAM-based FPGAs with optional integrated nonvolatile configuration memory;

acquired by Lattice in 2011), Achronix (SRAM based, 1.5 GHz fabric speed), and QuickLogic (handheld focused

CSSP, no general purpose FPGAs).In general, a logic block (CLB or LAB) consists of a few logical cells (called ALM,

LE, Slice etc.). A typical cell consists of a 4-input LUT, a Full adder (FA) and a D-type flip-flop, as shown below. The

LUTs are in this figure split into two 3-input LUTs. In normal mode those are combined into a 4-input LUT through the

left MUX. In arithmetic mode, their outputs are fed to the FA. The selection of mode is programmed into the middle

multiplexer.

 The output can be either synchronous or asynchronous, depending on the programming of the MUX to the right, in the

figure example. In practice, entire or parts of the FA are put as functions into the LUTs in order to save space.

.

Figure 13: FPGA Architecture

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 434

www.ijarsct.co.in

Impact Factor: 7.301

4.4 XILINX

Xilinx designs, develops and markets programmable logic products including integrated circuits (ICs), software design

tools, predefined system functions delivered as intellectual property (IP) cores, design services, customer training field

engineering and technical support. Xilinx sells both FPGAs and CPLDs programmable logic devices for electronic

equipment manufacturers in end markets such as communications, industrial, consumer, automotive, and data

processing.

Xilinx’s FPGAs have been used for the ALICE (A Large Ion Collider Experiment) at the CERN European laboratory

on the French-Swiss border to map and disentangle the trajectories of thousands of subatomic particles. Xilinx also

engaged in a partnership with the United States Air Force Research Laboratory’s space vehicles Directorate to develop

FPGAs to withstand the damaging effects of radiation in space for deployment in new satellites, which are 1,000 times

less sensitive to space radiation than the commercial equivalent.

Xilinx FPGAs can run a regular embedded OS (such as Linux or works) and can implement processor peripherals in

programmable logic. Xilinx’s IP cores include IP for simple functions (BCD encoders, counters, etc.,) for domain

specific cores (digital signal processing, FFT and FIR cores) to complex systems (multi-gigabit networking cores,

Micro Blaze soft microprocessor, and the compact Pico Blaze microcontroller). Xilinx also creates custom cores for a

fee.The ISE Design Suite is the central electronic design automation (EDA) product family sold by Xilinx. The ISE

Design Suite features include design entry and synthesis supporting Verilog or VHDL, place and route (PAR),

completed verification and debug using Chip Scope Pro tools, and creation of the bit files that are used to configure the

chip.

 Xilinx announced the architecture for an Extensible Processing Platform, which licenses the ARM Cortex-A9 MPCore

processor for embedded systems designers familiar with the ARM platform. The Extensible Processing Platform

architecture abstracts much of the hardware burden away from the embedded software developers point of view, giving

them an unprecedented level of control in the developmentprocess. With this platform, software developers can

leverage their existing system code based on ARM technology and utilize vast off-the-shelf open-source and

commercially available software component libraries. Because the system boots an OS at reset, software development

can get under way quickly within familiar development and debug environments using tools such as ARM’s Real View

development suite and related third-party tools, Eclipse-based IDEs, GNU, the Xilinx Software Development Kit and

others.

The platform targets embedded designers working on market applications that require multi functionality and real-time

responsiveness, such as automotive driver assistance, intelligent video surveillance, industrial automation, aerospace

and defense, and next-generation wireless. Xilinx announced, in early 2011, a new sync product family specifically

based on its extensible processing platform.

Following the introduction of its 28nm 7-series FPGAs, Xilinx revealed that several of the highest-density parts in those

FPGA product lines will be constructed using multiple dice in one package, employing technology developed for 3D

construction and stacked-die assemblies. The technology stacks several (three or four) active FPGA dice side-by-side

on a silicon interposer – a single piece of silicon that carries passive interconnect. The individual FPGA dice are

conventional, and are flip-chip mounted by micro bumps on to the interposer.

The interposer provides direct interconnect between the FPGA dice, with no need for transceiver technologies such as

high-speed Serdes.

4.5 MODEL SIM

ModelSim is a multi-language HDL simulation environment by Mentor Graphics, for simulation of hardware

description language such as VHDL, Verilog and systemC and includes a built-in C debugger.

4.5.1 Creating Project

A project is a collection of entity for a Verilog module under specification or test. Projects ease interaction with the tool

and are useful for organizing files and simulation settings. At a minimum, projects have a work library and a session

state that is stored in a .mpf file. A project may also consist of:

HDL source files or references to source files.

Other files such as READMEs or other project documentations.

Local libraries.

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT
www.ijarsct.co.in

Impact Factor: 7.301

References to global libraries.

Start ModelSim with one of the following:

1. Create and change to a new directory to make it the current directory. You can make the directory current by

invoking ModelSim from the new directory or by using the File > Change Directory command from the

Main window.

2. Copy the Verilog files (files with ".v" extension) from the

Before you can compile a Verilog design, you need to create a design library in the new directory. Since Modelsi

compiled Verilog simulator, it requires a target design library for the compilation. Modelsim can compile both VHDL

and Verilog code into the same library if desired.

3. Invoke Modelsim: from a Windows shortcut icon, from the Start menu.

4. Create library before you compile any HDL code, you’ll need a design library to hold the compilation results. To

create a new design library, make this menu selection in the Main window: File > New > Library. Make sure Create: a

new library and a logical mapping to it is selected. Type "work" in the Library Name field and then select OK. This

creates a subdirectory named work - your design library

named _info in the subdirectory.

5. Compile the counter.v, and tcounter.v files into the work library by selecting Compile > Compile from the menu.

6. Load the design by selecting Simulate > Simulate from the menu.The Simulate dialog appears. Click the "+" sign

next to ’work’ to see the counter and test_counter

test counter from the command line.)

7. Bring up the Signals, Source, and Wave windows by entering the following command at the VSIM prompt within the

main windows, view signals source wave (Main MENU: View >)

8. Add signals now let’s add signals to the Wave window with ModelSim’s drag and drop feature. In the Signals

window, select Edit > Select All to select the three signals. Drag the signals to either the pathname or the values pane o

the Wave window.

4.5.2 Basic Verilog simulation

The goals for this lesson are:

1. Compile a Verilog design

2.List signals in the design

3. Examine the hierarchy of the design

4. Simulate the design

5. Change the default run length

6. Set a breakpoint

The project feature covered in A executes several actions automatically such as creating and mapping work libraries. In

this part we will go through the entire process so you get a feel for how ModelSim really works

Schematic View

Simulation Output

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

 DOI: 10.48175/IJARSCT-11268

Start ModelSim with one of the following:

1. Create and change to a new directory to make it the current directory. You can make the directory current by

invoking ModelSim from the new directory or by using the File > Change Directory command from the

2. Copy the Verilog files (files with ".v" extension) from the \\modeltech\examples directory into the current directory.

Before you can compile a Verilog design, you need to create a design library in the new directory. Since Modelsi

compiled Verilog simulator, it requires a target design library for the compilation. Modelsim can compile both VHDL

and Verilog code into the same library if desired.

3. Invoke Modelsim: from a Windows shortcut icon, from the Start menu.

ibrary before you compile any HDL code, you’ll need a design library to hold the compilation results. To

create a new design library, make this menu selection in the Main window: File > New > Library. Make sure Create: a

o it is selected. Type "work" in the Library Name field and then select OK. This

your design library - within the current directory. Modelsim saves a special file

, and tcounter.v files into the work library by selecting Compile > Compile from the menu.

6. Load the design by selecting Simulate > Simulate from the menu.The Simulate dialog appears. Click the "+" sign

next to ’work’ to see the counter and test_counter design units. (You won’t see this dialog box if you invoke vsim with

7. Bring up the Signals, Source, and Wave windows by entering the following command at the VSIM prompt within the

ve (Main MENU: View >)

8. Add signals now let’s add signals to the Wave window with ModelSim’s drag and drop feature. In the Signals

window, select Edit > Select All to select the three signals. Drag the signals to either the pathname or the values pane o

The project feature covered in A executes several actions automatically such as creating and mapping work libraries. In

this part we will go through the entire process so you get a feel for how ModelSim really works

V. SIMULATION RESULTS

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 435

1. Create and change to a new directory to make it the current directory. You can make the directory current by

invoking ModelSim from the new directory or by using the File > Change Directory command from the ModelSim

examples directory into the current directory.

Before you can compile a Verilog design, you need to create a design library in the new directory. Since Modelsim is a

compiled Verilog simulator, it requires a target design library for the compilation. Modelsim can compile both VHDL

ibrary before you compile any HDL code, you’ll need a design library to hold the compilation results. To

create a new design library, make this menu selection in the Main window: File > New > Library. Make sure Create: a

o it is selected. Type "work" in the Library Name field and then select OK. This

within the current directory. Modelsim saves a special file

, and tcounter.v files into the work library by selecting Compile > Compile from the menu.

6. Load the design by selecting Simulate > Simulate from the menu.The Simulate dialog appears. Click the "+" sign

design units. (You won’t see this dialog box if you invoke vsim with

7. Bring up the Signals, Source, and Wave windows by entering the following command at the VSIM prompt within the

8. Add signals now let’s add signals to the Wave window with ModelSim’s drag and drop feature. In the Signals

window, select Edit > Select All to select the three signals. Drag the signals to either the pathname or the values pane of

The project feature covered in A executes several actions automatically such as creating and mapping work libraries. In

this part we will go through the entire process so you get a feel for how ModelSim really works

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT
www.ijarsct.co.in

Impact Factor: 7.301

logarithmic multiplication for convolutional neural networks (CNNs), with a The project investigates whether or not it

is possible to perform approximate particular emphasis on reducing the amount of power

research presents a design for a low power Mitchell's approximate logarithmic multiplier that may be utilized in CNNs

to execute multiplication in a manner that is both efficient and accurate.

When compared to traditional methods of

proposed offers a reduction in the amount of power consumed as well as the area overhead. Because the proposed

design has an accuracy that is on par with that of traditional met

for convolutional neural networks (CNNs) that must have both low power consumption and high performance.

Overall, the study highlights the potential of employing approximate logarithmic multiplicati

low power consumption without compromising accuracy or performance. This is accomplished through the use of

approximate logarithmic multiplication. The concept that was presented can serve as a foundation for further work in

the field of CNNs that are both power-efficient and effective

[1]. Venkataramani, S.; Chakradhar, S.T.; Roy, K.; Raghunathan, A. Approximate computing and the quest for

computing efficiency. In Proceedings of the 52nd Design Automation Conference, San Franci

8–12 June 2015. [Google Scholar]

[2]. Breuer, M.A. Multi-media applications and imprecise computation. In Proceedings of the 8th Euromicro

Conference on Digital System Design, Porto, Portugal, 30 August

[3]. Zhang, H.; Putic, M.; Lach, J. Low power GPGPU computation with imprecise hardware. In Proceedings of

the 51st Design Automation Conference, San Francisco, CA, USA, 1

[4]. Shoushtari, M.; Rahmani, A.M.; Dutt, N. Quality

Proceedings of the 14th International Conference on Compilers, Architecture, and Synthesis for Embedded

Systems, Taipei, Taiwan, 9–14 October 2011. [Google Scholar]

[5]. Sarwar, S.S.; Srinivasan, G.; Han, B.; Wijesinghe, P.;

Energy efficient neural computing: A study of cross

Syst. 2018, 8, 796–809. [Google Scholar] [CrossRef]

[6]. Sampson, A.; Deitl, W.; Fortuna, E.; Gnanapraga

types for safe and general low

on Programming Language Design and Implementation, San Jose, CA, USA, 4

Scholar]

[7]. Sampson, A.; Nelson, J.; Strauss, K.; Ceze, L. Approximate storage in solid

of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, Davis, CA, USA, 7

December 2013. [Google Scholar]

[8]. Nair, R. Big data needs approximate computing: Technical Perspective. Commun. ACM 2015, 58, 104.

[Google Scholar] [CrossRef]

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

 DOI: 10.48175/IJARSCT-11268

VI. CONCLUSION

logarithmic multiplication for convolutional neural networks (CNNs), with a The project investigates whether or not it

is possible to perform approximate particular emphasis on reducing the amount of power

research presents a design for a low power Mitchell's approximate logarithmic multiplier that may be utilized in CNNs

to execute multiplication in a manner that is both efficient and accurate.

When compared to traditional methods of multiplication, the experimental findings demonstrate that the design that was

proposed offers a reduction in the amount of power consumed as well as the area overhead. Because the proposed

design has an accuracy that is on par with that of traditional methods of multiplication, it is an option worth considering

for convolutional neural networks (CNNs) that must have both low power consumption and high performance.

Overall, the study highlights the potential of employing approximate logarithmic multiplicati

low power consumption without compromising accuracy or performance. This is accomplished through the use of

approximate logarithmic multiplication. The concept that was presented can serve as a foundation for further work in

efficient and effective

REFERENCES

Venkataramani, S.; Chakradhar, S.T.; Roy, K.; Raghunathan, A. Approximate computing and the quest for

computing efficiency. In Proceedings of the 52nd Design Automation Conference, San Franci

12 June 2015. [Google Scholar]

media applications and imprecise computation. In Proceedings of the 8th Euromicro

Conference on Digital System Design, Porto, Portugal, 30 August–3 September 2005. [Google Scholar]

; Putic, M.; Lach, J. Low power GPGPU computation with imprecise hardware. In Proceedings of

the 51st Design Automation Conference, San Francisco, CA, USA, 1–5 June 2014. [Google Scholar]

Shoushtari, M.; Rahmani, A.M.; Dutt, N. Quality-configurable memory hierarchy through approximation. In

Proceedings of the 14th International Conference on Compilers, Architecture, and Synthesis for Embedded

14 October 2011. [Google Scholar]

Sarwar, S.S.; Srinivasan, G.; Han, B.; Wijesinghe, P.; Jaiswal, A.; Panda, P.; Raghunathan, A.; Roy, K.

Energy efficient neural computing: A study of cross-layer approximations. IEEE J. Emerg. Sel. Top. Circuits

809. [Google Scholar] [CrossRef]

Sampson, A.; Deitl, W.; Fortuna, E.; Gnanapragasam, D.; Ceze, L.; Grossman, D. EnerJ: Approximate data

types for safe and general low-power computation. In Proceedings of the 32nd ACM SIGPLAN Conference

on Programming Language Design and Implementation, San Jose, CA, USA, 4

Sampson, A.; Nelson, J.; Strauss, K.; Ceze, L. Approximate storage in solid-state memories. In Proceedings

of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, Davis, CA, USA, 7

December 2013. [Google Scholar]

eds approximate computing: Technical Perspective. Commun. ACM 2015, 58, 104.

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 436

logarithmic multiplication for convolutional neural networks (CNNs), with a The project investigates whether or not it

is possible to perform approximate particular emphasis on reducing the amount of power required to do so. The

research presents a design for a low power Mitchell's approximate logarithmic multiplier that may be utilized in CNNs

multiplication, the experimental findings demonstrate that the design that was

proposed offers a reduction in the amount of power consumed as well as the area overhead. Because the proposed

hods of multiplication, it is an option worth considering

for convolutional neural networks (CNNs) that must have both low power consumption and high performance.

Overall, the study highlights the potential of employing approximate logarithmic multiplication in CNNs to produce

low power consumption without compromising accuracy or performance. This is accomplished through the use of

approximate logarithmic multiplication. The concept that was presented can serve as a foundation for further work in

Venkataramani, S.; Chakradhar, S.T.; Roy, K.; Raghunathan, A. Approximate computing and the quest for

computing efficiency. In Proceedings of the 52nd Design Automation Conference, San Francisco, CA, USA,

media applications and imprecise computation. In Proceedings of the 8th Euromicro

3 September 2005. [Google Scholar]

; Putic, M.; Lach, J. Low power GPGPU computation with imprecise hardware. In Proceedings of

5 June 2014. [Google Scholar]

hierarchy through approximation. In

Proceedings of the 14th International Conference on Compilers, Architecture, and Synthesis for Embedded

Jaiswal, A.; Panda, P.; Raghunathan, A.; Roy, K.

layer approximations. IEEE J. Emerg. Sel. Top. Circuits

sam, D.; Ceze, L.; Grossman, D. EnerJ: Approximate data

power computation. In Proceedings of the 32nd ACM SIGPLAN Conference

on Programming Language Design and Implementation, San Jose, CA, USA, 4–8 June 2011. [Google

state memories. In Proceedings

of the 46th Annual IEEE/ACM International Symposium on Microarchitecture, Davis, CA, USA, 7–11

eds approximate computing: Technical Perspective. Commun. ACM 2015, 58, 104.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 437

www.ijarsct.co.in

Impact Factor: 7.301

[9]. Panda, P.; Sengupta, A.; Sarwar, S.S.; Srinivasan, G.; Venkataramani, S.; Raghunathan, A.; Roy, K. Cross-

layer approximations for neuromorphic computing: From devices to circuits and systems. In Proceedings of

the 53rd Annual Design Automation Conference, Austin, TX, USA, 5–9 June 2016. [Google Scholar]

[10]. Jiang, H.; Santiago, F.J.H.; Mo, H.; Liu, L.; Han, J. Approximate arithmetic circuits: A survey,

characterization, and recent applications. Proc. IEEE 2020, 108, 2108–2135. [Google Scholar] [CrossRef]

[11]. Scarabottolo, I.; Ansaloni, G.; Constantinides, G.A.; Pozzi, L.; Reda, S. Approximate logic synthesis: A

survey. Proc. IEEE 2020, 108, 2195–2213. [Google Scholar] [CrossRef]

[12]. Jiang, H.; Liu, C.; Liu, L.; Lombardi, F.; Han, J. A review, classification, and comparative evaluation of

approximate arithmetic circuits. ACM J. Emerg. Technol. Comput. Syst. 2017, 13, 1–37. [Google Scholar]

[CrossRef][Green Version]

[13]. Garside, J.D. A CMOS VLSI implementation of an asynchronous ALU. In Proceedings of the IFIP Working

Conference on Asynchronous Design Methodologies, Manchester, UK, 31 March–2 April 1993. [Google

Scholar]

[14]. Wanhammar, L. DSP Integrated Circuits, 1st ed.; Academic Press: Cambridge, MA, USA, 1999; ISBN

9780127345307. [Google Scholar]

[15]. Raha, A.; Jayakumar, H.; Raghunathan, V. Input-based dynamic reconfiguration of approximate arithmetic

circuits for video encoding. IEEE Trans. VLSI Syst. 2016, 24, 846–857. [Google Scholar] [CrossRef]

[16]. Ercegovac, M.D.; Lang, T. Digital Arithmetic; Morgan Kaufmann: Burlington, MA, USA, 2003; ISBN 978-

1558607989. [Google Scholar]

[17]. Jiang, H.; Liu, C.; Maheshwari, N.; Lombardi, F.; Han, J. A comparative evaluation of approximate

multipliers. In Proceedings of the IEEE/ACM International Symposium on Nanoscale Architectures, Beijing,

China, 18–20 July 2016. [Google Scholar]

[18]. Vai, M.M. VLSI Design; CRC Press: Boca Raton, FL, USA, 2000; ISBN 978-0849318764. [Google Scholar]

[19]. Mahdiani, H.R.; Ahmadi, A.; Fakhraie, S.M.; Lucas, C. Bio-inspired computational blocks for efficient VLSI

implementation of soft-computing applications. IEEE Trans. Circuits Syst. I Regul. Pap. 2010, 57, 850–862.

[Google Scholar] [CrossRef]

[20]. Balasubramanian, P.; Maskell, D.L. Hardware efficient approximate adder design. In Proceedings of the

IEEE Region 10 Conference, Jeju, Korea, 28–31 October 2018. [Google Scholar]

[21]. Balasubramanian, P.; Maskell, D.L. Hardware optimized and error reduced approximate adder. Electronics

2019, 8, 1212. [Google Scholar] [CrossRef][Green Version]

[22]. Balasubramanian, P.; Nayar, R.; Maskell, D.L.; Mastorakis, N.E. An approximate adder with a near-normal

error distribution: Design, error analysis and practical application. IEEE Access 2021, 9, 4518–4530. [Google

Scholar] [CrossRef]

[23]. Balasubramanian, P.; Nayar, R.; Maskell, D.L. An approximate adder with reduced error and optimized

design metrics. Accepted for publication. In Proceedings of the 17th IEEE Asia Pacific Conference on

Circuits and Systems, Penang, Malaysia, 22–26 November 2021. [Google Scholar]

[24]. Balasubramanian, P.; Nayar, R.; Maskell, D.L. Approximate array multipliers. Electronics 2021, 10, 630.

[Google Scholar] [CrossRef]

[25]. Balasubramanian, P.; Nayar, R.; Min, O.; Maskell, D.L. Image blending using approximate multiplication. In

Proceedings of the IEEE 32nd International Conference on Microelectronics, Nis, Serbia, 12–14 September

2021. [Google Scholar]

[26]. Approximator. Available online: https://github.com/OkkarMin/approximator-tool (accessed on 7 November

2021).

[27]. Approximator Tool Documentation. Available online: https://tool-documentation.vercel.app (accessed on 7

November 2021).

[28]. Zhu, N.; Goh, W.L.; Zhang, W.; Yeo, K.S.; Kong, Z.H. Design of low-power high-speed truncation-error-

tolerant adder and its application in digital signal processing. IEEE Trans. VLSI Syst. 2010, 18, 1225–1229.

[Google Scholar]

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 1, June 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-11268 438

www.ijarsct.co.in

Impact Factor: 7.301

[29]. Albicocco, P.; Cardarilli, G.C.; Nannarelli, A.; Petricca, M.; Re, M. Imprecise arithmetic for low power

image processing. In Proceedings of the 46th Asilomar Conference on Signals, Systems and Computers,

Pacific Grove, CA, USA, 4–7 November 2012. [Google Scholar]

[30]. Gupta, V.; Mohapatra, D.; Raghunathan, A.; Roy, K. Low-power digital signal processing using approximate

adders. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2013, 32, 124–137. [Google Scholar]

[CrossRef]

[31]. Dalloo, A.; Najafi, A.; Garcia-Ortiz, A. Systematic design of an approximate adder: The optimized lower part

constant-OR adder. IEEE Trans. VLSI Syst. 2018, 26, 1595–1599. [Google Scholar] [CrossRef]

[32]. Seo, H.; Yang, Y.S.; Kim, Y. Design and analysis of an approximate adder with hybrid error reduction.

Electronics 2020, 9, 471. [Google Scholar] [CrossRef][Green Version]

[33]. Bovik, A. Handbook of Image and Video Processing, 2nd ed.; Academic Press: Orlando, FL, USA, 2005;

ISBN 978-0080533612. [Google Scholar]

[34]. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to

structural similarity. IEEE Trans. Image Processing 2004, 13, 600–612. [Google Scholar] [CrossRef]

[PubMed][Green Version]

[35]. Chan, W.-T.J.; Kahng, A.B.; Kang, S.; Kumar, R.; Sartori, J. Statistical analysis and modeling for error

composition in approximate computation circuits. In Proceedings of the 31st IEEE International Conference

on Computer Design, Asheville, NC, USA, 6–9 October 2013. [Google Scholar]

[36]. Balasubramanian, P.; Maskell, D.L. Factorized carry lookahead adders. In Proceedings of the IEEE 14th

International Symposium on Signals, Circuits and Systems, Iasi, Romania, 11–12 July 2019. [Google

Scholar]

[37]. Synopsys SAED_EDK32/28_CORE Databook. Revision 1.0.0, January 2012. Available online:

https://www.synopsys.com/community/university-program/teaching-resources.html (accessed on 27

September 2021).

[38]. Yamamoto, T.; Taniguchi, I.; Tomiyama, H.; Yamashita, S.; Hara-Azumi, Y. A systematic methodology for

design and analysis of approximate array multipliers.

