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Abstract: Linear programming (LP) is a powerful mathematical technique that has revolutionized 

optimization problems across various fields. This abstract highlights the significance of linear 

programming in optimization and its profound impact on decision-making, resource allocation, and 

efficiency enhancement. 

The primary objective of linear programming is to maximize or minimize a linear objective function, subject 

to a set of linear constraints. LP provides a systematic framework for modeling and solving complex 

optimization problems, enabling decision-makers to make informed choices and allocate resources 

optimally. The significance of linear programming lies in its ability to address a wide range of real-world 

challenges efficiently and effectively. 

In the realm of operations research, linear programming has found extensive applications in supply chain 

management, production planning, scheduling, and logistics optimization. By formulating decision 

problems into mathematical models, LP allows organizations to streamline their processes, minimize costs, 

optimize resource utilization, and maximize overall productivity. 

Linear programming has also made significant contributions in the field of economics. It has enabled 

economists to analyze and optimize economic systems, such as determining the optimal production levels 

for different goods, optimizing resource allocation in a market, and solving complex pricing problems. LP 

provides a quantitative framework for economic decision-making, facilitating the identification of optimal 

solutions and supporting policy development. 

Furthermore, linear programming plays a crucial role in the field of transportation and network 

optimization. It aids in solving problems related to route optimization, facility location, network design, and 

capacity planning. By efficiently allocating resources and optimizing transportation networks, LP helps 

reduce costs, improve service levels, and enhance overall efficiency in the transportation sector. 

In summary, the significance of linear programming for optimization is evident in its wide-ranging 

applications and its ability to tackle complex decision problems in various domains. By employing 

mathematical modeling and optimization techniques, LP allows decision-makers to make informed choices, 

allocate resources optimally, and achieve desired objectives. The ongoing advancements in LP algorithms 

and computing technologies further enhance its applicability and make it an indispensable tool for 

optimization in today's dynamic and competitive world. 
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I. INTRODUCTION 

1.1 Definition 

Linear programming is the name of a branch of applied mathematics that deals with solving optimization problems of a 

particular form.   Linear programming problems consist of a linear cost function (consisting of a certain number of 

variables) which is to be minimized or maximized subject to a certain number of constraints.    The constraints 

are linear inequalities of the variables used in the cost function.  The cost function is also sometimes called the objective 

function.Linear programming is closely related to linear algebra; the most noticeable difference is that linear programming 

often uses inequalities in the problem statement rather than equalities. 
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History 

Linear  programming  is  a  relatively  young  mathematical  discipline,  dating  from  the invention of the simplex 

method by G. B. Danzig in 1947.  Historically, development in linear programming is driven by its applications in 

economics and management.   Danzig initially developed the simplex method to solve U.S.  Air Force planning problems 

and planning and scheduling problems still dominate the applications of linear programming. One reason that linear 

programming is a relatively new field is that only the smallest linear programming problems can be solved without a 

computer. 

 

 Example  

Linear programming problems arise naturally in production planning. Suppose a particular Ford plant can build Escorts 

at the rate of one per minute, Explorer at the rate of one every 2 minutes, and Lincoln Navigators at the rate of one every 

3 minutes. The vehicles get 25, 15, and 10 miles per gallon, respectively, and Congress mandates that the average fuel 

economy of vehicles produced be at least 18 miles per gallon.  Ford loses $1000 on each Escort, but makes a profit of 

$5000 on each Explorer and $15,000 on each Navigator. What is the maximum profit this Ford plant can make in one 8-

hour day? 

 

The cost function is the profit Ford can make by building x Escorts, y Explorers, and z 

Navigators, and we want to maximize it: 

 1000 x  5000 y 15000z                                          (1.3.1) 

The constraints arise from  the  production  times  and  Congressional  mandate  on  fuel economy.  There are 480 

minutes in an 8-hour day, and so the production times for the vehicles lead to the following limit: 

 x    2 y    3z  480                                                 (1.3.2) 

 The average fuel economy restriction can be written: 

 25x 15y 10z 18 x    y    z                                      (1.3.3) 

which simplifies to: 

 7x    3y    8z    0       (1.3.4) 

 There is an additional implicit constraint that the variables are all non-negative:  x, y, z    0 . 

This production planning problem can now be written succinctly as: 

Maximize   -1000 x + 5000 y + 15000z 

subject t  x    2 y    3z 

  7x    3y    8z 480 

  x, y, z    0      (1.3.5) 

The solution to this problem is x=132.41,  y=0,  and z=115.86,  yielding a cost function value of 1,605,517.24.  Note 

that for some problems, non-integer values of the variables may not be desired.   Solving a linear programming 

problem for integer values of the variables only is called integer programming and is a significantly more difficult 

problem. The solution to an integer programming problem is not necessarily close to the solution of the same problem 

solved without the integer constraint.   In this example, the optimal solution if x , y , and z are constrained to be 

integers is x=132,  y=1,  and z=115 with a resulting cost function value (profit) of $1,598,000. 

 

Terminology 

A linear programming problem is said to be in “standard form” when it is written as: 
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T

The problem has m variables and n constraints. It may be written using vector terminology as: 

  
Note that a problem where we would like to minimize the cost function instead of maximize it may be rewritten in standard 

form by negating the cost coefficients cj (c ). 

Any vector x satisfying the constraints of the linear programming problem is called a feasible solution of the problem. 

Every linear programming problem falls into one of three categories: 

1.   Infeasible.   A linear programming problem is infeasible if a feasible solution to the problem does not exist; that 

is, there is no vector x for which all the constraints of the problem are satisfied. 

2.   Unbounded.  A linear programming problem is unbounded if the constraints do not sufficiently restrain the cost 

function so that for any given feasible solution, another feasible solution can be found that makes a further improvement 

to the cost function. 

3.   Has an optimal solution.   Linear programming problems that are not infeasible or unbounded have an optimal 

solution; that is, the cost function has a unique minimum (or maximum) cost function value. This does not mean that 

the values of the variables that yield that optimal solution are unique, however. 

The basic algorithm most often used to solve linear programming problems is called the simplex method.   Over the 

past 50 years, it has been developed to the point that good computer programs using the simplex method and its 

relatives (the revised simplex method and the network simplex method) can solve virtually any bounded, feasible linear 

programming problem of reasonable size in a reasonable amount of time.  Only in the past ten years have other methods 

of solving linear programming problems (so-called interior point methods) developed to the point where they can be used 

to solve practical problems. 

 

II. THE SIMPLEX METHOD 

How It Works 

The simplex method has two basic steps, often called “phases.” The first phase is to find a feasible solution to the 

problem. For small problems, or larger problems of certain forms, this is not at all difficult. Often, a trivial solution 

such as x = 0 is a feasible solution, as in the production planning problem described earlier.  We will omit the details of 

solving the first phase to find a feasible solution for now. 

After a feasible solution to the problem is found, the simplex method works by iteratively improving the value of the 

cost function. This is accomplished by finding a variable in the problem that can be increased, at the expense of 

decreasing another variable, in such a way as to effect an overall improvement in the cost function.  This can be 

visualized graphically as moving along the edges of a feasible set from corner to corner.   A two-dimensional example 

follows. 

Geometric Interpretation of the Simplex Method 

Consider the linear programming problem: 

 
The feasible set of this problem can be graphed in two dimensions as shown in Figure 1 . The non-zero constraints x  

0 and y  0 confine the feasible set to the first quadrant.  The other three constraints are lines in the x-y plane, as shown.  

The cost function, x + y , can be represented as a line of slope –1 with any intercept.  The value of the intercept of 
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The simplex method starts by fixing enough of the variables at 0 (their lower bound) and “remove” them from the 

problem so that the system A x = b  is square.  In this case, with the slack variables added there are 5 variables and 3 

constraints, so we need to set two variables to 0 and remove their coefficients from the problem to make the matrix A 

into a 

3x3 matrix. The solution of the system in this instance represents one of the vertices of the feasible set, as illustrated 

geometrically in Figure 1.  An obvious feasible solution to this problem is x = 0, y = 0.  These are the two variables set 

to zero and “removed” from the problem. Such variables are called non-basic variables. The solution to this system is 

then 

 r = 14,  s = 8,   t = 10.      

These three variables are called the basic variables for this solution. 

Now, we rewrite the problem with the constraints as equations for the basic variables r, s , and t: 

 z    =               x    +   y r    =   14  –    2x  –    y 

 s    =   8    +   x    –    2y                             (3.3.2) 

 t    =   10  –    2x  +   y x, y, r, s, t  0 

To begin iterating the simplex method, we look for a way to increase the cost function, z . Looking at the non-basic 

variables x and y , we try to increase one of them while holding the other at zero. However, the amount we can 

increase x is limited by the non-negativity constraints on the basic variables.  Looking at the reformulated constraints 

shown above, we see that for the first constraint for r  0, we must have x  7.    The second constraint does not limit 

x since an increase in x increases s, while the third constraint imposes the restriction that x  5.  Therefore, we choose 

to increase x from zero to 5, and recalculate the values of r, s, and t from the above equations:  r = 4,  s = 13,  and t 

= 0.    Since x goes from zero to non-zero, it is said to enter the basis and is called the entering variable for this iteration. 

Since t goes from non-zero to zero, it is said to leave the basis and is called the leaving variable. Our basis now 

consists of the variables r, s, and x and the variables t and y are non-basic and therefore zero. Our objective function z 

now has a value of 5. 

We now  rewrite the entire problem so  that the objective function and constraints are expressed only as functions 

of the non-basic variables t and y, by rearranging the constraint equation for t from above to be x = 5 – 0 .5 t + 0 .5 

y  and substituting into the other equations: 

 z    =   5    –    0.5t +  1.5y r    =   4    +   t      –  2y 

 s    =   13  –    0.5t –  1.5y                          (3.3.3) 

 x    =   5    –    0.5t +  0.5y x, y, r, s, t  0 

Now we iterate the simplex method again.  To increase z, we must increase y this time. The constraint on r limits y 

to be less than 2, the constraint on s limits y to be less than 

8.67, and the constraint on x does not limit y .   Therefore, we choose y as the entering variable with a value of 2, 

and r to be the leaving variable. The equation for r rearranges to y = 2 –0.5r + 0.5t.   Substituting in yields: 

 z =   8    –  0.75r +  0.25t y =   2    –  0.5r   +  0.5t. 

 s    =   10  +  0.75r –  1.25t                       (3.3.4) 

 x =   6    –  0.25r –  0.25t x, y, r, s, t  0 

Note that when the problem is in this form, we can read the current values of the basic variables and the objective 

function from the constants just to the right of the equals signs. The variables on the right of the equations are the non-

basic variables and all have value zero. To increase z for the next iteration, we have no other choice than to increase t.  

The constraint for s limits t to 8, while the constraint for x limits t to 24.  Therefore, t enters with a value of 8 and s 

leaves the basis. The rearranged equation is t = 8 + 0 .6 r – 0 .8 s . Substituting, we have: 

 z    =   10  –  0.6r   –  0.2s y    =   6    –  0.2r   –  0.4s 

 t    =   8    +  0.6r   –  0.8s                         (3.3.5) 

 x    =   4    –  0.4r   –  0.4s x, y, r, s, t  0 

Now the objective function z has value 10.  Examining the equation for z, we see that we cannot raise either r or s 

above zero without decreasing z.  This means there are no more advantageous changes we can make to the solution, so 



IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

                             International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

 Volume 3, Issue 15, May 2023 

Copyright to IJARSCT  DOI: 10.48175/IJARSCT-10899                184 

www.ijarsct.co.in                                                   

Impact Factor: 7.301 

it must be optimal.  Therefore, the solution to this linear programming problem is x = 4,  y = 6,  with an objective 

function value of 10. 

 

The Revised Simplex Method 

The revised simplex method is the name of an implementation of the simplex method that uses a slightly different 

method of updating the problem at each iteration:   instead of updating the problem using the results of the previous 

iteration, it uses the original data. Each iteration is still the same, but the revised simplex method is more 

computationally efficient, especially for large and sparse problems.  It is described in detail in the book by Chantal. 

 

Drawbacks 

There are three major pitfalls that present themselves when solving linear programming problems by the simplex method. 

They are: 

1.   Initialization.  This is the problem of finding an initial feasible solution with which to start the simplex method. 

2.   Iteration. There may be difficulties in choosing an entering or leaving variable. 

3.   Termination.  This is the problem of ensuring that the simplex method terminates and 

does not merely continue through an endless sequence  of  iterations  without  ever 

reaching an optimal solution. 

 

Initialization 

For many linear programming problems, finding an initial feasible solution is trivial; often, an all-zero solution is feasible 

and may be used as a starting point for the simple method. If an initial feasible solution is not readily available, one  

can be found by solving an auxiliary linear programming problem formulated by subtracting additional variables from 

the original problem’s constraints and changing the cost function to minimize the sum of these new variables. The 

auxiliary problem is solved, and when all of the added variables are zero, the values of the original variables 

represent an initial feasible solution.    The original linear programming problem is  then solved using this  initial 

solution.    If  the solution to the auxiliary problem does not yield a solution where the new variables are all zero, then a 

feasible solution to the original problem does not exist. This strategy is known as the two-phase simplex method.    The 

first phase sets up and solves the auxiliary problem, and the second phase solves the problem itself. 

 

Restatement 

There is usually no difficulty in selecting an entering or leaving variable for each iteration of the simplex method.  There is 

often more than one candidate for the entering or leaving variable, but any variable which satisfies the requirements for 

entering or leaving the basis may be chosen subject to termination considerations (discussed in the next section).  When 

choosing a leaving variable, the only pitfall that endangers finding a solution is un-roundedness’ when the entering 

variable is not constrained in value by any of the candidate leaving variables.   This means there is no candidate 

for the leaving variable (which is meant to be the basic variable which imposed the most stringent bound on the 

increase of the entering variable).   The problem in this case is unbounded and has no optimal solution. 

Another difficulty that may be encountered during iteration is the phenomenon of degeneracy.   Degeneracy is not 

harmful to the simplex method, but it does have some annoying consequences; notably, it can cause the simplex 

method to go  through many successive iterations that do not change the value of the solution (and therefore   do not 

change the value of the cost function either).  Degeneracy arises from solutions where one or more basic variables are 

zero, called degenerate solutions.  When a basic variable with zero value is replaced in the basis with an entering variable 

that is limited to zero value, the solution does not change value at all (although the variables in the basis do change) and 

the iteration just performed is called a degenerate iteration.  This is illustrated by the following example. 

 z    =   4    +   2x  –    y     –     4s 

 r    =   0.5    –     0.5s 

 t    =         –    2x  +   4y   +     3s                     (5.2.1) 

 u    =   x    –    3y   +     2s x, y, r, s, t, u  0 
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z    =   4    + 3y – s      – t 
r    =   0.5  – 0.5s  
x    = 2y + 1.5s – 0.5t 
u    =         – y + 3.5s – 0.5t 

Iterating this problem and choosing x as the entering variable and t as the leaving variable, we get: 

 

 

 

 

 

Note that for both solutions, the objective value z is 4 and the variable r = 0.5 w h i l e  all other variables are zero.  This 

is a degenerate iteration.   Eventually, the simplex method becomes “unstuck” and the iterations are non-degenerate.  In 

the above example, the next iteration is also degenerate, but the iteration after that is not and yields the optimal solution. 

Although degeneracy itself does not endanger the simplex method, it does have consequences for termination that are 

discussed in the next section.  Virtually all practical linear programming problems are degenerate. 

 

Termination 

The simplex method terminates by finding that the problem is infeasible or unbounded, or by finding the optimal 

solution.   The only other possibility is that the simplex method cycles; that is, it goes through an endless, repeating 

sequence of non-optimal solutions (which must all have the same cost function value). Note that cycling can only occur 

in the presence of degeneracy, since each iteration of a cycle must be degenerate.   There are several strategies for 

selecting either the entering or leaving variable (or both) that ensure that cycling does not occur.  The simplest of these 

is the “smallest-subscript” rule, which states that ties in the choice of entering and leaving variables are always broken in 

favor of the variable with the smallest subscript. 

 

Speed  

Studies on practical linear programming problems of various sizes have shown that the simplex method typically 

terminates after between 1.5m and 3m iterations, where m is the number of constraints in the problem.    The general 

consensus is that the number of iterations increases linearly with the number of constraints but only logarithmically with 

the number of variables. Theoretical studies of the efficiency of the simplex method are much less satisfactory, however. 

The worst case of the simplex method requires 2
n

-1 iterations, where n is the number of variables. However, problems 

where this has been demonstrated are considered pathologic, and a different choice of entering and leaving variables 

reduces the number of iterations from 2
n

-1 to one!   Therefore, the most practical way to ensure termination in a 

reasonable number of iterations is to pay careful attention to rules for selecting the entering and leaving variables.    

Theoretically satisfactory algorithms for solving linear programming problems are now available (known generally 

as interior point methods) but they are not useful for solving practical problems.   The simplex method, despite its 

theoretical shortcomings, is still the method of choice. 

 

Duality 

Every linear programming problem where we seek to maximize the objective function gives rise to a related problem, 

called the dual problem, where we seek to minimize the objective function. The two problems interact in an interesting 

way:  every feasible solution to one problem gives rise to a bound on the optimal solution in the other problem.  If one 

problem has an optimal solution, so does the other problem and the two objective function values are the same. The 

equations below show a problem in standard form with n variables and m constraints on the left, and its corresponding 

dual problem on the right. 
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If the original or primal problem has the optimal solution x*,  its dual problem has  an optimal solution y* and c T x* b T y 

*.   If the primal problem is infeasible or unbounded, 

 then the dual problem is infeasible or unbounded.  

Duality is mostly of theoretical importance, although some linear programming problems may be solved much more easily 

by converting them to their dual form. 

 

III. CONCLUSION 

Linear programming is an important branch of applied mathematics that solves a wide variety of optimization problems. It is 

widely used in production planning and scheduling problems.  Many recent advances in the field have come from the airline 

industry where aircraft and crew scheduling have been great improved by the use of linear programming. It has also been 

used to solve a variety of assignment problems, such as the karyotyping problem where 46 chromosomes are assigned to 24 

classes.  Although the revised simplex method is not theoretically satisfactory from a computational point of view, it is by 

far the most widely used method to solve linear programming problems and only rarely are its limitations encountered in 

practical applications.   The biggest advantage of linear programming as an optimization method is that it always achieves 

the optimal solution if one exists. 
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