

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 11, May 2023

Design and Optimize Product Cost of Screw Conveyor

Mr. Yadnyik Kiran Borse¹, Mr. Hemant Pannalal Siddha², Mr. Sagar Sunil Gonjari³ Mr. Rushikesh Sunil Warade⁴, Dr. Prakash Kadam⁵

Students, Department of Mechanical Engineering^{1,2,3,4}
Professor, Department of Mechanical Engineering⁵
Jaywantrao Sawant College of Engineering, Pune, India

Abstract: The screw conveyor is a commonly used device in industries for material handling and transportation. The purpose of this project is to design and optimize the product cost of a screw conveyor. The design process involves determining the required specifications of the conveyor, selecting appropriate materials, and optimizing the design to minimize the cost of production.

- 1. Select appropriate materials: The materials used for the screw conveyor will be selected based on their properties, such as strength, durability, and resistance to wear and corrosion.
- 2. Select appropriate materials: The materials used for the screw conveyor will be selected based on their properties, such as strength, durability, and resistance to wear and corrosion.
- 3. Design the screw conveyor: The screw conveyor will be designed using standard engineering principles, The design will also be optimized to reduce the cost of production.
- 4. Optimize the design: The design will be optimized using Ansys Software, which will enable us to test different designs and configurations to find the most cost-effective option.

Keywords: Material Selection, Optimizing Screw Conveyor, Manafacturing Process, Cost Analysis, Testing And Validation, Design Analysis.

I. INTRODUCTION

Screw conveyors are used extensively in various industries such as agriculture, food processing, and mining to transport materials from one point to another. The design of a screw conveyor is critical to ensure that it operates efficiently and meets the required specifications. The cost of a screw conveyor is also an important factor to consider, as it directly impacts the profitability of industrial operations. This paper presents a comprehensive approach to designing and optimizing the cost of screw conveyors..

- Material Properties: The material properties of the bulk material being conveyed are crucial in determining the screw conveyor's design. The properties to be considered include the material's bulk density, particle size, moisture content, and flow characteristics.
- Screw Diameter and Pitch: The screw diameter and pitch are critical in determining the conveyor's performance and efficiency. The diameter and pitch of the screw affect the conveying capacity, power requirements, and the ability to handle different materials
- Motor selection: Choosing an appropriately sized motor that is both energy-efficient and cost-effective.
- Screw Speed: The screw speed is another important parameter that affects the conveyor's performance. The speed of the screw is determined by the material properties, screw diameter, and pitch.
- CAPP: CAPP is a critical part of computer-integrated manufacturing (CIM) systems and is used in many industries, including aerospace, automotive, and electronics. The primary goal of CAPP is to optimize the manufacturing process by creating a plan that is efficient, cost-effective, and minimizes the potential for errors.

1.1 Problem Statement

The ultimate goal of the project is to produce a screw conveyor that meets the required specifications while minimizing the total cost of production, including materials, labor, and overhead expenses.

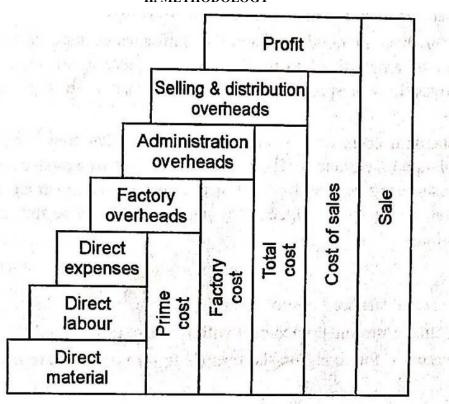
DOI: 10.48175/568

Copyright to IJARSCT www.ijarsct.co.in

N 54

2581-9429

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)


International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 11, May 2023

1.2 Objectives of Project

- Optimization in cost of product of screw conveyor as per selection of material by analysis of product.
- To get the variation in cost of the product.
- Decreases cost of product by decreasing the thickness of sheet metal.

II. METHODOLOGY

Formulae Sheet Metal Bending

LF= (L1+L2+ L3+ +Ln) + (B1+B2+B3+....+Bn) L1=L2=L-tan(A/2)×(R+T) BA= $A(\pi/180)$ ×[R+(K×T)]

Welding Data Cost

- 1. Time required to weld length of plates= lenth of plate / rate of welding
- 2. Total consumption of oxygen=oxygen consumption per hour × time of welding
- 3. Total consumption of acytylene =acytylene
- 4. Consumption per hour×time of welding
- 5. Effective lenth of filler rod required = lenth of weld/ legth of filler rod requird/m
- 6. Cost of oxygen consumed= total oxygen consumed \times cost of oxygen/ m^3
- 7. Cost of acytylene consumed=total acytylene consumed \times cost of acytylene $/m^3$
- 8. Cost of filler rod consumed= {(volume of filler rod consumed ×density)/1000} ×cost of rod/kg
- 9. Total material cost of weld = (total cost of oxygen +total cost of acytylene +total cost of filler rod)

- 10. Labour cost = time of welding \times labour hour rate \times no. Of pieces.
- 11. Overhead charges= percentages/ labour cost

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 11, May 2023

Model cost

- 1. Actual welding speed = welding speed × operator factor
- 2. Cost of labour per meter of weld = cost of labour /hr /actual welding speed
- 3. Power consumption= [(voltage×current)/1000]× machining efficiency ×welding speed
- 4. Cost of power per meter of weld =power consumption ×cost of power per Kilo-watt/hr (kwh)
- 5. Cost of electrode per meter of weld= weight of electrode /m × cost of electrode

Machining cost

- 1. Raw material cost = [area × thickness × density × quantity] $/ 10^6$
- 2. Scrap weight =
- 3. Process $cost = scrap weight \times scrap cost$
- 4. Raw material cost = material cost × raw material weight
- 5. Net cost =raw material cost scrap cost
- 6. Machining cost= 15 % of raw material cost
- 7. Labour cost = 20% of raw material cost
- 8. Final cost = net cost + machining cost + labour cost

Process cost

- 1. Prime cost = material cost + labour cost + direct expenses
- 2. Factory cost = prime cost + administrative overhead (office overhead charges)
- 3. Selling cost = factory cost + selling overhead charges
- 4. Profit = 10% of selling cost
- 5. Final cost = profit + selling cost

III. CALCULATION

						C	COSTING	SHEET						
PART NO	no pieces	MACHINING PRO	PART IMG		MACHING COST			WEDLING COST						
		LASER CUTTING		DENSITY	AREA	RM WGT(KG)	SCRAP WGT(KG)	NET WGT(KG	reqr.time t	Oxgn. consume	actylne consume	cost of filler rod	labour cost	
		PUNCHIMG		7.8		4.8	0.35	4.45					201.6	
PART NO 1				THICKNESS		RM COST(RS)	SCRAP COST(RS)	NET COST(RS)		cost oF o2	cost of actylne	total mtrial cost	machinery cos	
				10	61544	1008	6.36	1001.64			7.50		151.2	1354.44
		PRESSING		DENSITY	AREA	RM WGT(KG)	SCRAP WGT(KG)	NET WGT(KG	regr.time	Oxgn. consume	actylne consume	cost of filler rod	labour cost	
		BENDING		7.8		1864	0.19				72		784.47	
	8			THICKNESS		RM COST(RS)	SCRAP COST(RS)	NET COST(RS)		cost oF o2	cost of actylne	total material cos	machinery cos	
PART NO 2	2				407004.00.7									
				4	467.07	3922.35	3.57	3918.78	7.4	į.			588.3525	5291.6025
		PRESSING		DENSITY		RM WGT(KG) 11.02	SCRAP WGT(KG)		regr.time	Oxgn. consume	actylne consume	cost of filler rod	labour cost	
		DRILLING		7.8 THICKNESS			0.13 SCRAP COST(RS)	10.89 NET COST(RS)		cost oF o2	cost of actylne	total material cos	462.84	
PART NO 3	1			THICKNESS		RIVI COST(RS)	SCRAP COST(RS)	NET COST(KS)		COST OF UZ	cost of actyline	total material cos	machinery cos	
				20	70650	2314.2	2.34	2311.86					347.13	3121.83
		PRESSING		DENSITY	AREA	RM WGT(KG)	SCRAP WGT(KG)	NET WGT(KG	regr.time	Oxgn. consume	actylne consume	cost of filler rod	labour cost	
		BENDING	-1	7.8		16.55	9.7	6.85					695.1	
			1 1	THICKNESS		RM COST(RS)	SCRAP COST(RS)	NET COST(RS)		cost oF o2	cost of actylne	total material cos	machinery cos	
PART NO 4	8		U											
				5	1122.68	3475.5	174.6	3300.9	- 1	İ			521.325	4517.325

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

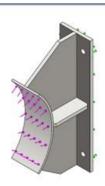
Impact Factor: 7.301

Volume 3, Issue 11, May 2023

		1 1		I						1				
		PRESSING BENDING		DENSITY 7.8	AREA	RM WGT(KG) 19.68	SCRAP WGT(KG) 10.3		regr.time	f Oxgn. consume 2015.61				6
PART NO 5		DRILLING		THICKNESS		RM COST(RS)	SCRAP COST(RS)	NET COST(RS	1	cost oF o2	cost of actylne	total material co	st machinery co	os
TAIL NO S														
				3	59.03*10^	4132.8	185.58	3947.22	1832.38	30234.15	120936.6	184568.11	619.92	189961.81
		PRESSING	-	DENSITY		RM WGT(KG)	SCRAP WGT(KG)	NET WGT(KG		t Oxgn. consume	actylne consume		labour cost	
		BENDING		7.8 THICKNESS		44.07 RM COST(RS)		NET COST(RS	1	cost oF o2	cost of actylne	total material co	1850.9 st machinery co	
PART NO 6	2		/-/							[
-7.		PRESSING	4	DENSITY	547.98 AREA	9254.7 RM WGT(KG)	13.68 SCRAP WGT(KG)	9241.02 NET WGT/KG	rear time	fOxgn. consume	actylne consume	cost of filler rod	1388.205	12480.165
		THESONIC		7.8	AILA	13.95		13.95					585.95	
PART NO 7				THICKNESS		RM COST(RS)	SCRAP COST(RS)	NET COST(RS	1	cost oF o2	cost of actylne	total material co	st machinery co	S
			4											
				10	4867	2929.76		2929.76					439.464	3955.176
		PRESSING	A	DENSITY	AREA	RM WGT(KG) 4.68	SCRAP WGT(KG)	NET WGT(KG	reqr.time	10xgn. consume	actylne consume	cost of filler rod	labour cost 196.85	0
				THICKNESS			SCRAP COST(RS)	NET COST(RS		cost oF o2	cost of actylne	total material co		
PART NO 8														
					25.50	035003 F2F		***						***************************************
	l	1 1		5	171.69	984.29	I	984.29	I		1	I	147.6435	1328.7915
		LEASER CUTTING		DENSITY	AREA	RM WGT(KG)	SCRAP WGT(KG)	NET WGT(KG	rear time f	Oxgn. consume	actylne consume	cost of filler rod	labour cost	
		DRILLING		7.8		0.81	0.076	0.734					0	
PART NO 9				THICKNESS		RM COST(RS)	SCRAP COST(RS)	NET COST(RS)		cost oF o2	cost of actylne	total material cost	machinery cos	
										1				
				4	25600	170.1	1.368	168.732					25.515	194.247
		BENDING			AREA	RM WGT(KG)	SCRAP WGT(KG)	NET WGT(KG	regr.time t	Oxgn. consume	actylne consume	cost of filler rod	labour cost	
		DRILLING		7.8 THICKNESS		0.5 RM COST(RS)		0.486 NET COST(RS)		cost oF o2	cost of actylne	total material cost	21 machinery cos	
PART NO 10)													
										1				
		BENDING	-	3 DENSITY	67.63 AREA	105 RM WGT(KG)	0.25 SCRAP WGT(KG)	104.75	roor time (Oxgn. consume	actylne consume	enst of filler rad	15.75	141.5
		BENDING	4	7.8		0.7	1	0.7	requaline i	Oxgn. consume	actylile consume	cost of filler rou	29.446	
PART NO 11	1			THICKNESS		RM COST(RS)	SCRAP COST(RS)	NET COST(RS)		cost oF o2	cost of actylne	total material cost	machinery cos	
7,411 110 12										1				
				3	93.63	147.23		147.23		1			22.0845	198.7605
		PRESSING	Α	DENSITY	AREA	RM WGT(KG)	SCRAP WGT(KG)	NET WGT(KG	regr.time f		actylne consume		labour cost	150.7005
				7.8 THICKNESS		0.00474 RM COST(RS)	SCRAP COST(RS)	0.00474 NET COST(RS)		1.57 cost oF o2	1.562 cost of actylne	7.008 total material cost	0.198	
PART NO 12	2			THOUSE		Tun Good (110)	Service cost(no)				cost of decime	total material cos	macamery coo	
				\						1				
				3	202.58	0.99		0.99	1.42	23.55	93.72	117.27	0.1485	118.6065
		DRILLING		DENSITY 7.8	AREA	RM WGT(KG) 3.78	SCRAP WGT(KG) 2.02		regr.time f	Oxgn. consume	actylne consume	cost of filler rod	labour cost 158.76	
			1	THICKNESS				NET COST(RS)		cost oF o2	cost of actylne	total material cost	machinery cos	
PART NO 13	5													
				10	156*10^3	793.8	36.36	757.44		1			119.07	1025 27
		PRESSING	A				SCRAP WGT(KG)	NET WGT(KG	reqr.time t	Oxgn. consume	actylne consume	cost of filler rod	labour cost	1035.27
				7.8 THICKNESS		0.46 RM COST(RS)		0.37 NET COST(RS)		cost oF o2	cost of actylne	total material cost	19.32 machinery cos	
PART NO 14														
			7							1				
		711011110		8	7425	96.6	1.62	94.98				1 (011 1	14.49	128.79
		TURNING DRILLING		DENSITY 7.8	AREA	1.53	SCRAP WGT(KG) 0.4		regr.ume i	Oxgn. consume	actylne consume	cost of filler rod	64.26	
PART NO 15	5			THICKNESS		RM COST(RS)	SCRAP COST(RS)			cost oF o2	cost of actylne	total material cost	machinery cos	
- SAT NO 13			6											
				40	1256	321.3	2.52	318.78					48.195	431.235
		LEASER CUTTING		DENSITY	AREA	RM WGT(KG)	SCRAP WGT(KG)	NET WGT(KG	regr.time f	Oxgn. consume	actylne consume	cost of filler rod	labour cost	
		DRILLING		7.8 THICKNESS		9.89 RM COST(RS)		NET COST(RS)		cost oF o2	cost of actylne	total material cost	415.38 machinery cos	
PART NO 16	5		()		1									
		T 1.000000000000000000000000000000000000		10	126869	2076.9	1926	150.9				1 Con	311.535	877.815
		TURNING ON CUTTING	1	DENSITY 7.8	AREA	RM WGT(KG) 40.08	SCRAP WGT(KG)	NET WGT(KG 40.08	regr.time f	Oxgn. consume	actylne consume	cost of filler rod	labour cost 1683.36	
		COTTING	MAR	THICKNESS		RM COST(RS)	SCRAP COST(RS)	NET COST(RS		cost oF o2	cost of actylne	total material cost		
PART NO 1	.7		- CERTIFICATION OF THE PERSON								•			
			A.							[
			1	76	4976007	9416 0		0416 0					1262.52	11262 69
		TURNING		76 DENSITY	4876997 AREA	8416.8 RM WGT(KG)	SCRAP WGT(KG)	8416.8 NET WGT(KG	regr, time f	Oxgn. consume	actylne consume	cost of filler rod	1262.52 labour cost	11362.68
				7.8	В	8.27	,	8.27					347.34	
	0		-	THICKNESS	6	RM COST(RS)	SCRAP COST(RS)	NET COST(RS		cost oF o2	cost of actylne	total material cost	machinery cos	
PART NO 1	8									I				
										1				
				65	3215.36	1736.7		1736.7					260.505	2344.545
	11.													

DOI: 10.48175/568

Copyright to IJARSCT www.ijarsct.co.in



International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

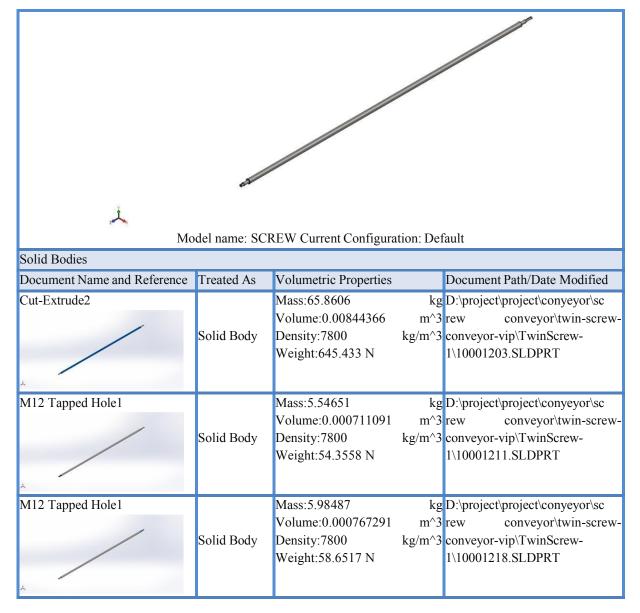
International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

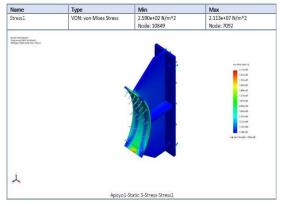
Volume 3, Issue 11, May 2023

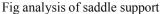
IV. ANALYSIS

Model name: Apoyo1 Current Configuration: Default

Document Name and Reference	Treated As	Volumetric Properties	Document Path/Date Modified		
Boss-Extrude1	Solid Body	Mass:2.18975 kg Volume:0.000280737 m^3 Density:7800 kg/m^3 Weight:21.4595 N	D:\project\project\conyeyor\s crew conveyor\screw- conveyor-10-x-10-5- 1.snapshot.3\p3.sldprt		
Boss-Extrude1	Solid Body	Mass:0.214001 kg Volume:2.7436e-05 m^3 Density:7800 kg/m^3 Weight:2.09721 N	D:\project\project\conyeyor\s crew conveyor\screw- conveyor-10-x-10-5- 1.snapshot.3\p31.sldprt		
Imported1	Solid Body	Mass:0.559275 kg Volume:7.17019e-05 m^3 Density:7800 kg/m^3 Weight:5.4809 N	D:\project\project\conyeyor\s crew conveyor\screw- conveyor-10-x-10-5- 1.snapshot.3\p4.sldprt		
Boss-Extrude1	Solid Body	Mass:1.66905 kg Volume:0.000213981 m^3 Density:7800 kg/m^3 Weight:16.3567 N	D:\project\project\conyeyor\s crew conveyor\screw- conveyor-10-x-10-5- 1.snapshot.3\p5.sldpr		






International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 11, May 2023

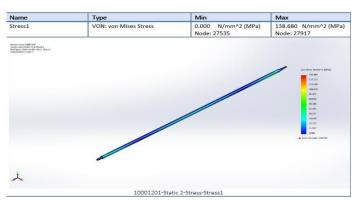


Fig. Analysis of screw

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 11, May 2023

V. RESULT

Optimization in cost of saddle support

	OPTIMIZATION IN COST													
843			Case 1			Case 2			Case 3			Case 4		
Material	Plain Carbon Steel		Material	AISI 1020		Material	AISI 1020		Material	AISI 1020		Material	AISI 1020	
Assembly Weight	16.08	Kg	Assembly Weig	15.68	Kg	Assembly Weight	8.58	Kg	Assembly	8.58	Kg	Assembly	4.29	Kg
Plate Thickness	16	mm	Plate Thickness	16	mm	Plate Thickness	8	mm	Plate Thic	6.43	mm	Plate Thic	6.43	mm
Material Cost / K	190	INR/KG	Material Cost /	58	INR/KG	Material Cost / Kg	58	INR/KG	Material (58	INR/KG	Material (58	INR/KG
Cost	3055.2		Cost	909.44		Cost	497.64		Cost	497.64		Cost	248.82	
Qty	2		Qty	2		Qty	2		Qty	2		Qty	2	
Total Cost (Mater	6110.4		Total Cost (Ma	1818.88		Total Cost (Material Cost)	995.28		Total Cost	995.28		Total Cost	497.64	
Assembly Weight	680	Kg	Assembly Weig	680	Kg	Assembly Weight	680	Kg	Assembly	680	Kg	Assembly	680	Kg
Material Transpo	163	Kg	Material Trans	163	Kg	Material Transportation Weig	163	Kg	Material 1	163	Kg	Material 1	163	Kg
Total Weight	843	Kg	Total Weight	843	Kg	Total Weight	843	Kg	Total Wei	843	Kg	Total Wei	843	Kg
FEA Results			FEA Results			FEA Results			FEA Resu	its				
Stress	Deformation	FOS	Stress	Deformation	FOS	Stress	eformatio	FOS	Stress	eformatio	FOS	Stress	eformatio	FOS
9.125 MPA	0.015mm	24	9.1116 MPA	0.016mm	39	19.819 MPA	0.036 mm	18	6.515 MP	0.048 mm	13	9.829 MP	0.074 mm	8.8

Cost Reduction

5612

Variation in cost of screw

Initial								
Material	Stress	Deflection	FOS	Weight	Cost	Total Cost		
ASTM A36	21.89 MPA	0.78 MM	11	127.58	100	12758		

Final								
Material	Stress	Deflection	FOS	Weight	Cost	Total Cost		
AISI 1090	22.053 MPA	0.7 MM	7.2	128	55	7040		

Cost Reduction 5718

DOI: 10.48175/568

PROCESSING COST	
TOTAL MATERIAL NET COST	39532.772
TOTAL LABOUR COST	8806.224
DIRECT EXPENSES	1000
PRIME COST	49338.996
ADMINISTRATION OVERHHEAD	9000
FACTORY COST	58338.996
SELLLING OVERHEAD CHARGE	20000
SELLING COST	78338.996
PROFIT	7833.8996
FINAL MARKET COST	86172.8956

Final cost of screw conveyor= initial cost of screw conveyor- total reduced cost =86172.8956-11330

Copyright to IJARSCT www.ijarsct.co.in

^{=74842.8956} RS

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 11, May 2023

VI. CONCLUSION

In conclusion, the design and optimization of the cost of a screw conveyor are essential for the efficient and cost-effective transportation of materials. The design of a screw conveyor depends on various parameters such as the type of material being transported, the distance it needs to be transported, and the flow rate required. The cost of a screw conveyor is dependent on several factors such as the cost of materials used, the manufacturing cost, and the operating cost. By optimizing these factors, it is possible to design a screw conveyor that is both efficient and cost-effective

VII. ACKNOWLEDGMENT

A screw conveyor is a mechanical device used to transport materials from one point to another by means of a rotating helical screw blade. It is a crucial component in many industrial processes, including food processing, agriculture, mining, and wastewater treatment.

In order to design and optimize the product cost of a screw conveyor, the following steps should be taken:

- Define the requirements: The first step is to define the requirements of the screw conveyor. This includes the type of material to be transported, the flow rate, the distance to be covered, and any other specifications.
- Determine the size and capacity: Based on the requirements, the size and capacity of the screw conveyor can
 be determined. This includes the diameter of the screw, the pitch of the helix, the length of the conveyor, and
 the motor size.
- Material selection: The selection of materials is critical to the cost optimization of the screw conveyor. The
 materials used should be of high quality, durable, and cost-effective. The choice of materials will also affect
 the weight of the conveyor, which can impact transportation and installation costs.
- Manufacturing process: The manufacturing process should be optimized to minimize waste and reduce labor costs. This includes using automated machinery and techniques such as laser cutting and CNC machining.
- Testing and validation: The screw conveyor should be tested and validated to ensure that it meets the required specifications and is functioning properly.
- Cost analysis: The final step is to conduct a cost analysis of the screw conveyor. This includes the cost of
 materials, manufacturing, assembly, and testing. The cost analysis should be used to identify areas where costs
 can be reduced without compromising the quality or functionality of the product.

REFERENCES

- [1]. De Beer, J., J. Harnisch, M. Kerssemeeckers, 1999. Greenhouse Gas Emissions from Iron and Steel Production, Ecofys, The Netherlands.
- [2]. CEC, 1999. Integrated Pollution Prevention and Control (IPPC). Best available techniques reference document on the production of iron and steel, European Commission, Directorate-General Joint Research Centre, Seville, Spain.
- [3]. Daniels, B.W. and H.C. Moll, 1998. The base metal industry: Technological descriptions of processes and production routes; status quo and prospects. Center for Energy and Environmental Studies, Research Paper no 92, University of Groningen, Groningen, The Netherlands.
- [4]. Ellis, J. and M. Bosi, 1999. Options for Project Emission Baselines. OECD and IEA information paper, Paris.
- [5]. Gilecki, 2000. Personal communication with Ryszanol Gilecki, Agencja Rynku Energii S.A., Warsaw, Poland, on 14 March 2000.
- [6]. Lawrence Berkeley National Laboratory, 1999. International Network on Energy Demand in the Industrial Sector (INEDIS) Database. Berkeley, CA: LBNL

