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Abstract: The amount of time a device can perform the same task while being competitive is referred to as 

its remaining useful life. Manufacturers can reduce development costs by deciding when to replace parts 

and utilities by calculating the remaining usable life. The amount of time that the machine's original parts 

are expected to maintain working perfectly before being upgraded is known as the machine's remaining 

useful life. The amount of time, or the number of cycles or cycles, that a machine can still technically be 

used in regular service is known as its remaining useful life. The amount of years (often) that a component 

of equipment or machinery is anticipated to last before becoming outdated is known as its remaining usable 

life. A decision tree classifier is employed in this model to determine whether or not you demand service 

guess it depends on the machine's monthly earnings. Using a decision tree classifier, the machine learning 

method is used to determine whether a service is needed or not. Data classification can be done in many 

different ways. Decision tree learning, which is a strategy for determining the best decision tree from a 

collection of input values to achieve the maximum of each of its leaf nodes, is one of the most well-liked 

classification strategies. Decision tree learning is an algorithm in use by data scientists to label objects in a 

dataset. In our model, we will compute the remaining useful life (RUL).We will use lasso regression to 

determine the age of a machine's investment spending. This machine's average service is added toward its 

life expectancy, and the estimation is found, from which we are able to evaluate the machine's remaining 

useful life. 
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