
IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

  

 Volume 3, Issue 1, April 2023 
 

Copyright to IJARSCT               DOI: 10.48175/IJARSCT-9035 236 

www.ijarsct.co.in 

Impact Factor: 7.301 

Plant Disease Recognition: A Visual Region and 

Loss Reweighting Approach 
Keerthi K S1 and Bincy Louis2 

M.Tech Student, Department of Electronics and Communication1 

Assistant Professor, Department of Electronics and Communication2 

Loudes Matha College of Science and Technology, Thiruvanathapuram, Kerala, India 

 

Abstract: Plant disease diagnosis is very important for agriculture because of its importance in     

increasing crop production. Nowadays the advances in image processing gives a new way. One of    the 

newest way to solve this issue via visual plant disease analysis. In this paper, we discuss the problem of 

plant disease recognition. Here we tackle plant disease recognition via reweighting both visual regions and 

loss to emphasize diseased parts. We first compute the weights of all the divided patches from each image 

based on the cluster distribution of these patches to indicate the discriminative level of each patch. Then we 

allocate the weight to each loss for each patch-label pair during weakly supervised training to enable 

discriminative disease part learning. We finally extract patch features from the network trained with loss 

reweighting, and utilize the LSTM network to encode the weighed patch feature sequence into a 

comprehensive feature representation. Extensive evaluations on this dataset and another public dataset 

demonstrate the advantage of the proposed method. We expect this research will further the agenda of plant 

disease recognition in the community of image processing. 
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