

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 3, Issue 2, February 2023

Electrical Conductivity of Newly Synthesized Copolymer Resin-IV from 2, 4-Dihydroxypropiophenone, 1, 5-Diaminonaphthalene and Formaldehyde

N. C. Das¹ and W. B. Gurnule²

Department of Chemistry, Dr. Ambedkar College of Arts, Commerce & Science, Chandrapur, Maharashtra, India¹ Department of Chemistry, Kamla Nehru Mahavidyalaya, Nagpur, Maharashtra, India² ncd.lec@gmail.com

Abstract: The copolymer 2,4-DHP-1,5-DANF-IV has been synthesized by condensation of 2,4dihydroxypropiophenone, 1,5-diaminonaphthalene with formaldehyde in the presence of 2M hydrochloric acid as a catalyst with 4:2:7 molar ratio of reacting monomers. The copolymer has been characterized by elemental analysis, UV-Visible, FT-I and ¹H-NMR spectra. Electrical conductivity measurement has been carried out to ascertain the semiconducting nature of the copolymer resin. The electrical conductivity of the copolymer has been found to be 2.05×10^{-10} to 1.15×10^{-8} ohm⁻¹ cm⁻¹ in the temperature range 313-428 K. The activation energy of electrical conduction has been found to be 6.48×10^{-20} J/K. The plots of log σ Vs $10^{3}/T$ are found to be linear over a wide range of temperature, which obeyed the Wilson's exponential law $\sigma = \sigma_{0} \exp(-\Delta E/KT)$ and the copolymer can be ranked as semiconductor.

Keywords: Copolymer, Synthesis, Characterization, Morphology, Electrical Conductivity

REFERENCES

- [1]. M. Nagmote, J. Dontulwar and R. Singru, Electrical conductivity study of resin synthesized from 1-naphthol-4-sulphonic acid and hexamethylene diamine and formaldehyde, Der Pharma Chemica, 6(6), 427-434, 2014.
- [2]. S. S. Pande and W. B. Gurnule, Synthesis, characterization and semiconducting studies of salicylaldehydeformaldehyde-melamine copolymers, International Journal on Recent and Innovation Trends in Computing and Communication, 3(2), 49-52, 2015.
- [3]. W. B. Gurnule and S. K. Mandavgade, Electrical conductance properties of a copolymer resin: synthesis, characterization and its applications, RJPBCS, 5(4), 737-747, 2014.
- [4]. A. N. Gupta, N. T. Khati, V. V. Hiwase, and A. B. Kamble, Semiconducting properties of terpolymer derived from p-hydroxybenzaldehyde, adipic acid and ethylene glycol., ICRTEST, 5(22), 318-320, 2017.
- [5]. A. N. Gupta, Electrical conductance behaviour of terpolymer resin-II derived from p-hydroxybenzaldehyde, urea and ethylene glycol, Perspectives in Science, 8, 207-209, 2016.
- [6]. M. A. Gabal, M. A. Hussein, A. A. Hermas, Synthesis, characterization and electrical conductivity of polyaniline Mn_{0.8}Zn_{0.2}Fe₂O₄ nano-composites, Int. J. Electrochem. Sci., doi: 10.20964/2016.06.20, 4526-4538, 11, 2016.
- [7]. V. R. Chinchamalatpure and P. P. Kalbende, Synthesis, characterization and electrical conductivity of some copolymers and its polychlates, 7(3), 562-576, 2018.
- [8]. S. N. Niley, K. P. Kariya and B. N. Berad, Electrical conductivity study of thermally stable newly synthesized terpolymer, Technical Research Organization India, 5(1), 242-249, 2018.
- [9]. M. B. Thakre, Electrical conductance properties of terpolymer resin: synthesis, characterization and its applications, International Journal for Environmental Rehabilitation and Conservation, 4(1), 89 96, 2013.

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 3, Issue 2, February 2023

- [10]. K. M. Khedkar, V. V. Hiwase, A. B. Kalambe and S. D. Deosarkar, Electrical conducting behaviour of newly synthesized m-cresol-hexamine-formaldehyde terpolymeric resin and its polychelates, J. Chem. Pharm. Res., 4(5), 2468-2474, 2012.
- [11]. D. T. Masram, K. P. Kariya and N. S. Bhave, Thermal degradation and electrical conductivity measurement study of resin derived from salicylic acid, hexamethylenediamine and formaldehyde, Elixir Appl. Chem., 48, 9557-9562, 2012.
- [12]. Wasudeo. B. Gurnule, Charulata S. Makde, and Mudrika Ahamed, Synthesis , characterization morphology thermal, electrical and chelation ion exchange properties of a copolymer, J. Enviorn. Res. Develop. 7(3), 1183-1192, 2013.
- [13]. D. T. Masram, K. Kariya and N. S. Bhave, Kinetic and electrical conductivity study of resin resulting from salicylic acid and phenylenediamine with formaldehyde, British Journal of Research, 1(2), 43-52, 2014.
- [14]. S. K. Kapse, V. V. Hiwase, A. B. Kalambe and J. D. Kene, Comparative thermokinetics study of terpolymeric resins derived from p-hydroxyacetophenone, resorcinol and glycerol, Res. J. Chem. Sci., 4(2), 81-86, 2014
- [15]. Vaishali R. Bisen and W. B. Gurnule, Kinetics of thermal decomposition of copolymer resin derived from 4-hydroxybenzaldehyde, phenylhydrazine and formaldehyde, RJPBCS, 5(4), 1283-1297,2014.
- [16]. W. B. Gurnule and N. C. Das, Kinetic study of Non-isothermal decomposition of copolymer resin derived from 2,4-dihydroxypropiophenone, 1,5-diaminonaphthalein and formaldehyde, Materials Today Proceedings, 15, 611-619, 2019.
- [17]. M. M. Yeole, S. Shrivastava and W. B. Gurnule, Synthesis and characterization of copolymer resin derived from 4-methyl acetophenone, phenyl hydrazine and formaldehyde, Der Pharma Chemica, 7(5), 124-129, 2015.
- [18]. W. B. Gurnule and N. C. Das, Thermal degradation study of copolymer derived from 2-hydroxy, 4methoxybenzophenone, 1,5-diaminonaphthalene and formaldehyde, Int. J. of Current Engineering and Scientific Research, 6(1), 1414-1425, 2019.
- [19]. W. B. Gurnule and N. C. Das, Electrical conducting behavior of copolymer resin-III synthesized from 2,4dihydroxypropiophenone, 1,5-diaminonaphthalein and formaldehyde, Ajanta, 8(1), 16-25, 2019.