

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, November 2022

A Survey Study on Automatic Subtitle Synchronization and Positioning System for Deaf and Hearing Impaired People

Santosh S Kale¹, Shruti Dhanak², Paras Chavan³, Jay Kakade⁴, Prasad Humbe⁵

Guide, Department of Computer Engineering¹ Students, Department of Computer Engineering^{2,3,4,5} NBN Sinhgad School of Engineering, Pune, Maharashtra, India

Abstract: In this study, we provide a subtitle synchronisation and placement system intended to improve deaf and hearing-impaired individuals' access to multimedia content. The paper's main contributions are a novel synchronisation algorithm that can reliably align the closed caption with the audio transcript without any human involvement and a timestamp refinement technique that can modify the duration of the subtitle segments in accordance with audiovisual recommendations. Regardless of the kind of video, the experimental evaluation of the strategy on a sizable dataset of 30 films pulled from the French national television verifies the method with average accuracy scores above 90%. The success of our strategy is demonstrated by the subjective assessment of the suggested subtitle synchronization and location system, carried out with real hearing challenged persons.

Keywords: Automatic Subtitle Synchronization.

REFERENCES

- [1]. A. Katsamanis, M. P. Black, P. G. Georgiou, L. Goldstein, and S. Narayanan, "SailAlign: Robust long speech-text alignment," in Proc. Workshop New Tools Methods Very-Large Scale Phonetics Res., Philadelphia, PA, USA, Jan. 2011, pp. 1–4.
- [2]. X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou, W. He, and J. Liang, "EAST: An efficient and accurate scene text detector," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 2642–2651.
- [3]. P. J. Moreno, C. Joerg, J.-M. Van Thong, and O. Glickman, "A recursive algorithm for the forced alignment of very long audio segments," in Proc. Int. Conf. Spoken Lang. Process, Dec. 1998, pp. 2711–2714.
- [4]. M. H. Davel, C. V. Heerden, N. Kleynhans, and E. Barnard, "Efficient harvesting of Internet audio for resource-scarce ASR," in Proc. Interspeech, Aug. 2011, pp. 3154–3157.
- [5]. N. Braunschweiler, M. J. F. Gales, and S. Buchholz, "Lightly supervised recognition for automatic alignment of large coherent speech recordings," in Proc. Interspeech, Sep. 2010, pp. 2222–2225.
- [6]. X. Anguera, J. Luque, and C. Gracia, "Audio-to-text alignment for speech recognition with very limited resources," in Proc. Interspeech, Sep. 2014, pp. 1405–1409.
- [7]. B. Axtell, C. Munteanu, C. Demmans Epp, Y. Aly, and F. Rudzicz, "Touchsupported voice recording to facilitate forced alignment of text and speech in an E-Reading interface," in Proc. 23rd Int. Conf. Intell. User Interface, Mar. 2018, pp. 129–140.
- [8]. I. Ahmed and S. K. Kopparapu, "Technique for automatic sentence level alignment of long speech and transcripts," in Proc. Interspeech, Aug. 2013, pp. 1516–1519.
- [9]. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. R. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012, doi: 10.1109/MSP.2012.2205597.
- [10]. N. T. Vu, F. Kraus, and T. Schultz, "Rapid building of an ASR system for under-resourced languages based on multilingual unsupervised training," in Proc. Interspeech, Aug. 2011, pp. 1–4.

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, November 2022

- [11]. G. Bordel, M. Penagarikano, L. J. Rodríguez-Fuentes, A. Álvarez, and A. Varona, "Probabilistic kernels for improved text-to-speech alignment in long audio tracks," IEEE Signal Process. Lett., vol. 23, no. 1, pp. 126– 129, Jan. 2016.
- [12]. A. Haubold and J. R. Kender, "Alignment of speech to highly imperfect text transcriptions," in Proc. IEEE Multimedia Expo Int. Conf., Jul. 2007, pp. 224–227.
- [13]. D. Yu and L. Deng, Automatic Speech Recognition: A Deep Learning Approach. London, U.K.: Springer, 2014.
- [14]. T. J. Hazen, "Automatic alignment and error correction of human generated transcripts for long speech recordings," in Proc. Interspeech, Sep. 2006, pp. 1–4.
- [15]. G. E. Dahl, D. Yu, L. Deng, and A. Acero, "Context-dependent pretrained deep neural networks for large-vocabulary speech recognition," IEEE Trans. Audio, Speech, Language Process., vol. 20, no. 1, pp. 30–42, Jan. 2012, doi: 10.1109/TASL.2011.2134090.
- [16]. S. Hoffmann and B. Pfister, "Text-to-speech alignment of long recordings using universal phone models," in Proc. Interspeech, Aug. 2013, pp. 1520–1524.
- [17]. M. J. F. Gales, K. M. Knill, and A. Ragni, "Unicode-based graphemic systems for limited resource languages," in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015, pp. 5186–5190.
- [18]. B. Safadi, M. Sahuguet, and B. Huet, "When textual and visual information join forces for multimedia retrieval," in Proc. Int. Conf. Multimedia Retr., Apr. 2014, pp. 265–272
- [19]. Kaldi a Toolkit for Speech Recognition. Accessed: Apr. 20, 2021. [Online]. Available: <u>http://kaldi-asr.org/doc/</u>
- [20]. I. Gonzalez-Carrasco, L. Puente, B. Ruiz-Mezcua, and J. L. Lopez-Cuadrado, "Sub-sync: Automatic synchronization of subtitles in the broadcasting of true live programs in Spanish," IEEE Access, vol. 7, pp. 60968–60983, 2019, doi: 10.1109/ACCESS.2019.2915581