

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, August 2022

Automatic Bone Fracture Detection Methods : A Review

Udaya Sree K and Prasad R Menon

Department of Electronics and Communication Engineering NSS College of Engineering, Palakkad, Kerala, India

Abstract: Accident-related bone fractures affect peo- ple often. The doctors typically use X-ray/CT scans to manually identify fractures. But sometimes there isn't enough information in these photos to make a diagnosis. Furthermore, a high risk of false detection and subpar fracture healing may be caused by a lack of clinicians in medically underserved areas, a lack of specialised medical personnel in overcrowded institutions, or stress brought on by a large caseload. Computer vision and artificial intelligence based on image processing, deep learning, and machine learning are increasingly playing a crucial role in the identification of bone fractures. This research looks into fracture diagnosis in detail with the goal of assisting doctors in the development of models.

Keywords: Bone Fracture.

REFERENCES

- [1]. Hoai Phuong Ngyuen, Thi Phuong Hoang, Huy Hoang Nguyen, "A deep learning based fracture detection in arm bone X-ray images", IEEE, 15-16 October 2021.
- [2]. Yangling Ma, Yixin Luo, "Bone fracture detection through the two-stage system of CrackSensitive Convolutional Neural Network", Informatics in Medicine, Science direct, vol 236, pp.24-40, 2021.
- [3]. Linyan Xue, Weina Yan, Ping Luo, Xiongfeng Zhang, Tetiana Chaikovska, Kun Liu, Wenshan Gao, Kun Yang, "Detection and localization of hand fractures based on GA Faster R- CNN", Alexandria Engineering Journal, Elsevier, vol 88, pp.128-142, 2021.
- [4]. Shukla Abhilash, Patel Atul, "Abnormality Detection from X-Ray Bone Images using DenseNet Convolutional Neural Network", International Journal of Current Research and Review, IJCRR, Vol 13. Issue 10, May 2021.
- [5]. D. P. Yadav, Sandeep Rathor, "Bone Fracture Detection and Classification using Deep Learning Approach", International Conference on Power Electronics IoT Applications in Renew- able Energy and its Control, IEEE, Vol 21, pp-25-40, 2020.
- [6]. B Raghavendra Setty, Kamalapurada Vishwanath, Puneeth G J, Dr. B. Sreepathi, "Survey on Features and Techniques used for Bone Fracture Detection and Classification", International Research Journal of Engineering and Technology, vol 07, issue 05, IRJET, 2020.
- [7]. Guan, B., Zhang, G., Yao, J., Wang, X., Wang, M "Arm frac- ture detection in X-rays based on improved deep convolutional neural network", Computers and Electrical Engineering, vol 250, 2020: 1629-1638
- [8]. Mutasa, S., Varada, S., Goel, A., Wong, T.T., Rasiej, M.J " Advanced Deep Learning Techniques Applied to Automated Femoral Neck Fracture Detection and Classification", Journal of Digital Imaging, Springer, vol 33, pp no. 1209 – 1217, 2020
- [9]. Lee, C., Jang, J., Lee, S., Kim, Y.S., Jo, H.J., Kim, Y, "Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network", Scientific Reports, Vol 10, 1–12, 2020.
- [10]. Jin, L., Yang, J., Kuang, K., Ni, B., Gao, Y., Sun, Y., Gao, P., Ma, W., Tan, M., Kang, H., Chen, J., Li, M., Deep- learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet, EBioMedicine, vol 62, 2020.
- [11]. Guan, B., Yao, J., Zhang, G., Wang, X, "Thigh fracture detection using deep learning method based on new dilated convolutional feature pyramid network", Pattern Recognition Letters vol 125, pp. 521–526, 2019.
- [12]. Yahalomi, E., Chernofsky, M., Werman, M., 2019. Detection of Distal Radius Fractures Trained by a Small Set of X-Ray Images and Faster RCNN, Advances in Intelligent Systems and Computing. pp. 971–98, 2019.

Copyright to IJARSCT www.ijarsct.co.in

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, August 2022

- [13]. Y. Yang and L. Cheng, "Long-Bone Fracture Detection using Artificial Neural Networks based on Line Features of X-ray hnages", Information Processing Management 58, no. 1, 2019
- [14]. Eveling Castro Gutierrez, Laura Estacio-Cerquin, Joel Gallegos-Guillen, Javier Delgado Obando, "Detection of Acetabulum Fractures Using X-Ray Imaging and Processing Methods Focused on Noisy Images", Amity International Conference on Artificial Intelligence (AICAI), IEEE, 2019.
- [15]. Wu, Zhengyang, et al. "Classification of Reservoir Fracture Development Level by Convolution Neural Networ Algo- rithm." 2018 14th International Conference on Natural Com- putation, Fuzzy Systems and Knowledge Discovery (ICNC FSKD). IEEE, 2018.
- [16]. Johari, Nancy, and Natthan Singh. "Bone Fracture Detection Using Edge Detection Technique." Soft Computing: Theories and Applications. Springer, Singapore, 2018. 11-19. Tripathi, Ankur Mani, et al. "Automatic detection of fracture in femur bones using image processing." 2017 International Conference on Innovations in Information, Embedded and Communica- tion Systems (ICIIECS). IEEE, 2017.
- [17]. Tripathi, Ankur Mani, et al. "Automatic detection of fracture in femur bones using image processing." 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). IEEE, 2017.
- [18]. Yu Cao, Hongzhi Wang, Mehdi Moradi, Prasanth Prasanna, Tanveer F. Syeda-Mahmood, "Fracture detection in x-ray images through stacked random forests feature fusion", IEEE International Symposium on Biomedical Imaging, IEEE, 2015
- [19]. Umadevi, N., and S. N. Geethalakshmi. "Multiple classifi- cation system for fracture detection in human bone x-ray images." 2012 Third International Conference on Computing, Communication and Networking Technologies (ICCCNT'12). IEEE, 2012.
- [20]. Lum, Vineta Lai Fun, et al. "Combining classifiers for bone fracture detection in X-ray images." IEEE International Con- ference on Image Processing 2005. Vol. 1. IEEE, 2005