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Abstract: Many methods have been developed to protect web servers against attacks. Anomaly detection 

methods rely on generic user models and application behaviour, which interpret departures as indications 

of potentially dangerous behaviour from the established pattern. In this report, we conducted the use of a 

systematic review of the anomaly detection methods to prevent and identify web assaults; in particular, we 

utilised Kitchen ham’s standard approach for conducting a organized analysis of literature in the computer 

science area. Logs that record system abnormal states (anomaly logs) can be regarded as outliers, and the 

improved PCA algorithm has relatively high accuracy in outlier detection methods. Therefore, we use 

improved algorithm to detect anomalies in the log data. However, there are some problems when using the 

improved PCA algorithm to detect anomalies, three of which are: excessive vector dimension leads to 

inefficient kNN algorithm, unlabeled log data cannot support the kNN algorithm, and the imbalance of the 

number of log data distorts the classification decision of kNN algorithm. In order to solve these three 

problems, we propose an efficient log anomaly detection method based on an improved PCA algorithm with 

an automatically labeled sample set. This method first proposes a log parsing method based on N-gram and 

frequent pattern mining (FPM) method, which reduces the dimension of the log vector converted with Term 

frequency. Inverse Document Frequency (TF-IDF) technology. Then we use clustering and self-training 

method to get labeled log data sample set from historical logs automatically. Finally, we improve the PCA 

algorithm using average weighting technology, which improves the accuracy of the PCA algorithm on 

unbalanced samples. The method in this article is validated on four log datasets with different types. The 

maximum recall rate & accuracy achieved for BGL dataset is 100 % & 97.62 % respectively. Similarly 

maximum F1-score achieved for Spirit dataset is 98.19 %. The accuracy, recall rate and F1-Score for 

Improved PCA Ensemble technique is 97.62 %, 100 % and 96.55 % for BGL/2 Log Set Data. Similarly, the 

accuracy, recall rate and F1-Score for Improved PCA Ensemble technique is 97.60 %, 98.79 % and 98.19 

% respectively for Spirit/2 log set data. 
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