IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 8, May 2022

Analysis of Effectiveness of Eco-Friendly Refrigerant Combinations in a Domestic Air Conditioner System

Mr. Aakash Mishra¹ and Dr. Shrihar Pandey²

Student, Department of Mechanical Engineering¹
Associate Professor & Head, Department of Mechanical Engineering²
Ojaswini Institute of Management and Technology, Damoh, Madhya Pradesh, India

I. INTRODUCTION

Many published literature shows Hydroflourocarbon (HFC) and hydro carbons (HC) refrigerant mixture as the favorable replacement for HCFC22 in refrigeration and air-conditioning systems. Moreover, it was assumed that the addition of HCs(290/600) to HFC152a makes it compatible with POE oil .In this chapter the various factors that were considered to select a suitable HFC and HC mixture refrigerants with various mass proportions as drop-in substitute for HCFC22 are discussed. Since HC mixture is zeotropic in nature, the refrigerant mixture preparation and handling procedure followed for the selected mixture is also discussed.

REFERENCES

- [1]. Adrián Mota-Babiloni, Joaquín Navarro-Esbrí, Ángel Barragán-Cervera, Francisco Molés & Bernardo Peris 2015, 'Analysis based on EU Regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC
- [2]. systems', International Journal of Refrigeration.
- [3]. Adriano Greco, Mastrolla, R & Palombo 2003, 'R-407C as an Alternative to R-22 in Vapour Compression Plant: An Experimental Study', International Journal of Refrigeration, vol. 21, pp. 1087-1098.
- [4]. Agarwal, RS & Bhatia, P 1998, 'Energy Consumption of Indian Domestic Refrigeration under Field and Laboratory Conditions A Step Towards Energy-Efficiency Standards', IIf-IIR Commissions, New Delhi, pp. 342-352.
- [5]. Agarwal, RS 1998, 'Hydrocarbon Refrigerants for Domestic and Commercial Refrigeration Appliances', IIF-I1R Commissions, New Delhi, pp. 270-284.
- [6]. Aprea, C & Greco, A 2020, 'Performance Evaluation of R-22 and R- 407C in a Vapour Compression Plant with Reciprocating Compressor', Applied Thermal Engineering, vol. 23, pp. 215-227.
- [7]. Aprea, C, Mastrolla, R, Renno, C & Vanoli, GP 2019, 'An evaluation of R-22 Substituents Performance Regulating Continuously the Compressor Refrigeration Capacity', Applied Thermal Engineering, vol. 24, pp. 127-139.
- [8]. Arcaklioglu, E 2005, 'An algorithmic approach towards finding better substitutes of Chlorofluorocarbons in terms of the second law of thermodynamics', Energy Conversion and Management, vol. 46, pp. 1595-1511.
- [9]. Buero of Indian Standards (BIS) 1992, 'Room Air conditioners Specifications', Part I: Unitary Air Conditioners, IS1391, New Delhi, India.
- [10]. Calm, JM & Domanski, PA 2004, 'R22 replacement status', ASHRAE J, vol. 46, no. 8, pp. 29-39.
- [11]. Camporese, R, Bigolaro, G & Bobbo, S 1997, 'Experimental Evaluation of Refrigerant Mixtures as Substitutes for R-12 and R-502', International Journal of Refrigeration, vol. 20, pp. 22-31.
- [12]. Chen, S., Judge, JF, Groll, EA & Radermacher, R 1994, 'Theoretical Analysis of Hydrocarbon Refrigerant Mixtures as a Replacement for R-22 for Residential Uses', International Refrigeration Conference, Indiana, pp. 225-230.
- [13]. Choi, JM & Kim, YC 2002, 'The Effects of Improper Refrigerant charge on the Performance of a Heat Pump with an Electronic Expansion Valve and Capillary Tube', Energy, vol. 27, pp. 391-404.
- [14]. 'Climate Change 2013: The physical science basis. Contribution of working group I to the fifth Assessment Report of the Intergovernmental panel on Climate Change (IPCC), Cambridge University Press, Cambridge,

DOI: 10.48175/568

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 8, May 2022

- United Kingdom and New York, NY, USA, 1535 pp.
- [15]. Corberan, JM & Segurado, JB 2008, 'Review of standards for the use of hydrocarbons refrigerants (HCs) in air conditioners, heat pump and refrigeration equipment', International Journal of Refrigeration, vol. 3, no. 4, pp. 748-756.
- [16]. Coulbourne, D & Ritter, TJ 1998, 'Hydrocarbon Refrigeration Safety: Standards and Quantitative Risk Assessments', IIF-IIR Commissions Conference, New Delhi, pp. 293-301.
- [17]. David Morrison, J, Stuat Corr & Bruce E Gillbert 1997, 'Production Scale Handling of Zeotropic Blends' ASHRAE Transactions, vol. PH- 97-9-2, pp. 756-764.
- [18]. Deng, J 1989, 'Introduction to Grey Theory', Journal of Grey Systems, vol. 1, no. 1, pp. 1-24.
- [19]. Devotta, S, Padalkar, AS & Sane, NK 2005, 'Performance assessment of HC290 as a drop-in substitute to HCFC-22 in a window air conditioner', International Journal of Refrigeration, vol. 28, pp. 594-604.
- [20]. Devotta, S, Patil, PA, Joshi, SN, Sawant, NN & Sane, NK 1998, 'Compressor Life tests with Alternatives to R-12', IIf-IIR Commissions, New Delhi, pp. 321-329.
- [21]. Devotta, S, Waghjmare, AV, Sawant, NN & Domkundwar, BM 2001, 'Alternatives to R-22 for Air Conditioners', Applied Thermal Engineering, vol. 17, pp. 703-715.
- [22]. Domanshki, PA 1999, 'Evaluation of Refrigerant Application'International Congress on Refrigeration', Milan, Italy.
- [23]. Donald B Bivens, Charles C Allgood & Joseph J Rizzo 1994, 'R-22 Alternative for Air Conditioners and Heat Pumps', ASHRAE Transactions, pp. 562-571.
- [24]. Donald B Bivens, Donna M Patron & Yokozeki, A 1997, 'Performance of R-32/R-125/R-134a Mixtures in Systems in Accumulators or Flooded Evaporators', ASHRAE Transactions, pp. 777-780.
- [25]. Dongsoo Jung, Yongjae Song & Bongjin Park 2000, 'Performance of R-22 Alternatives', International Journal of Refrigeration, vol. 23, pp. 466-474.
- [26]. Fatouh, M & EI Kafafy, M 2006, Assessment of propane/ commercial butane mixtures as possible alternatives to R134a in domestic refrigerators', Energy Conversion and Management, vol. 47, pp. 2644-2658.

DOI: 10.48175/568