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Abstract: From business to education, email is now used in almost every industry. Subcategories of email 

exist, such as ham and spam. Unsolicited email, also known as spam or junk email, is a sort of email that can 

be used to harm consumers by wasting their time, using up their computer resources, and collecting sensitive 

information. Every day, the amount of spam sent out increases alarmingly. For email and IoT service 

providers, spam detection and filtering have suddenly become substantial and pervasive concerns. Email 

filtration is one of the most essential and well-known advanced spam detection and prevention techniques. 

Many machine learning and deep learning algorithms have been used for this purpose, including Naive 

Bayes, decision trees, neural networks, and random forests. This article divides utility research approaches 

into applicable classifications based on machine learning tactics used in texting systems. The accuracy, 

precision, recall, and other performance characteristics of these approaches are all well assessed. Finally, 

broad ideas and prospective study directions are provided. 
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