A Review on Computer Vision based Classification of Sickle Cell Anemia in Human RBC

Diksha R. Tembhurne and Dr. R. M. Deshmukh
Department of Electronics & Telecommunication Engineering
Dr. Rajendra Gode Institute of Technology & Research Amravati, Maharashtra, India
dikshagrim333@gmail.com

Abstract: Anemia is a disease which is caused by the deficiency of red blood cells. The shape of red blood cell changes to sickle or crescent shape in sickle cell anemia disease. Sickle Cell Disease is a blood disorder which results from the abnormalities of red blood cells and shortens the life expectancy to 42 and 48 years for males and females respectively. It also causes pain, jaundice, shortness of breath, etc. Sickle Cell Disease is identified by the presence of sickle cells and other abnormal cells like ovalocytes, echinocytes are detected and classified in different classes it helps to find out reason of abnormalities. Given a two-dimensional image, a computer vision system must recognize the present objects and their characteristics such as shapes, textures, colors, sizes, spatial arrangement, among other things, to provide a description as complete as possible of the image. This paper presents computer vision based classification of sickle cell disease. In their an artificial neural network(ANN) is a computational model that uses a network of a function to understand and translate a data of one form into a desired output. In this paper we have summarized for we reviewed the various techniques to get the sickle cell identification or sickle cell classification. The artificial neural network technique is used to train and classify the microscopic images into sickle cell.

Keywords: Red blood cell, sickle cell anemia Computer Vision, Classification, artificial neural network.

REFERENCES

[6]. Hamid Falah Dheyab, Osman Nuri UCAN , Mohammed Khalaf "Implementation a Various Types of Machine Learning Approaches for Biomedical Datasets based on Sickle Cell Disorder". Authorized licensed use limited to: University of Prince Edward Island. Downloaded on June 08,2021 at 11:00:36 UTC from IEEE Xplore. 978-1-7281-9090-7/20/$31.00 ©2020 IEEE.

[8]. Chayashree Patgiri, Amrita Ganguly .Department of Electrical Engineering, Assam Engineering College, Guwahati 13, India chayashreepatgiri21@gmail.com aganguly.ele@aec.ac.in ."Red Blood Cell and Sickle Cell Detection from Microscopic Blood Images of Sickle Cell Anemic Patient." 978-1-5386-9279-0/19/$31.00 c 2019 IEEE.

[9]. Yaima Paz-Soto, Silena Herold-Garcia, Leandro A. F. Fernandes and Saul D’iaz-Matos Engineering and Technical Science Faculty Universidad de Guantanamo, Gu antanamo, Cuba Email: ysoto@cug.co.co Universidad de Oriente, Santiago de Cuba, Cuba Email: silena@uo.edu.co, saul.diaz@estudiantes.uo.edu.co Universidad Federal Fluminense, Niteroi, Brazil Email: laffernades@ic.uff.br. " Automatic Classification of Erythrocytes Using Artificial Neural Networks and Integral Geometry-Based Functions." Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. May 27,2021 at 00:02:55 UTC from IEEE Xplore.

[11]. Bheem Sen, Uttar Pradesh, India senbheem1998@gmail.com Shubhra Dixit, Uttar Pradesh, India sdixit@amity.edu Adarsh Ganesh adarshganesh130@gmail.com Anupama Bhan abhan@amity.ed. "Deep Learning based diagnosis of sickle cell anemia in human RBC." 2021 2nd International Conference on Intelligent Engineering and Management (ICIEM).

[12]. Vishwas Sharma, Adhiraj Rathore, Garima Vyas Department of Electronics & Communication Engineering Amity University, U.P, Noida-201303 Sharma.vishwas1995@gmail.com, adhirathore21@gmail.com, gvyas@amity.ed." Detection of sickle cell anaemia and thalassaemia causing abnormalities in thin smear of human blood sample using image processing ".

[13]. Dr. Bikesh Kumar Singh Dept. of Biomedical Engineering NIT, Raipur India bsingh.bme@nitr.ac.in Hardik Thakkar Dept. of Biomedical Engineering NIT, Raipur Raipur, India hardikthakkar1710@gmail.com "Hydroxyurea Dosage Classification for Sickle Cell Disease Patients". Proceedings of the Sixth International Conference on Inventive Computation Technologies [ICICT 2021] IEEE Xplore Part Number: CFP21F70-ART; ISBN: 978-1-7281-8501-9.

[15]. Mo Zhang, Student Member, IEEE, Xiang Li, Member, IEEE, Mengjia Xu, and Quanzheng Li, Member, IEEE Joint first authors, " Automated Semantic Segmentation of Red Blood Cells for Sickle Cell Disease ". University of London July 13,2020 at 00:41:54 UTC from IEEE Xplore.