

A Unified Matrix-Algorithm Framework for DNA Sequencing and Protein Folding Applications

Payal Chandrakant Shinde and Shweta Sachin Bibave

Department of Mathematics

S. N. Arts, D. J. Malpani Commerce and B. N. Sarda Science College (Autonomous), Sangamner,
Dist. Ahilyanagar (M.S), India.

Affiliated to Savitribai Phule Pune University
shwetabibave@sangamnercollege.edu.in

Abstract: *Bioinformatics relies heavily on mathematical and computational frameworks to analyse large-scale biological data generated by modern sequencing technologies. Among these frameworks, matrix algorithms provide a structured and computationally efficient approach for modelling biological sequences and molecular interactions. In this paper, we propose a unified matrix-algorithm framework that integrates sequence encoding matrices, dynamic programming alignment matrices, and contact/energy matrices for protein folding within a common linear algebraic perspective. Unlike existing studies that treat DNA sequencing and protein folding independently, the proposed framework highlights their shared mathematical structure and analytical consistency. A comparative analysis is presented to demonstrate improved alignment consistency and interpretability of matrix-based methods over conventional heuristic approaches for small and medium-sized biological systems. The study establishes a reproducible mathematical foundation that can be extended to hybrid models combining matrix algorithms with machine learning techniques.*

Keywords: Bioinformatics; Linear Algebra; Matrix Algorithms; DNA Sequencing; Protein Folding; Computational Biology