An Efficient Synthesis of 2,4,5-Triaryl-1H-Imidazole Derivatives Catalyzed by Boric Acid IN Green Condition

Gurumeet C Wadhawa1, Sarang Bhagvat, Ramesh Mohite2, Yashwant Gaikwad
Assistant Professor, Post Graduate Department of Chemistry1
Head, Department of Chemistry2
Karmaveer Bhaurao Patil College, Navi Mumbai, Maharashtra, India

Abstract: Boric acid (BO3H3) is an inexpensive, efficient and mild catalyst for the synthesis of 2,4,5-triaryl-1H-imidazoles in excellent yields from the one-pot three-component condensation of benzil/benzoin, an aldehydes and ammonium acetate in aqueous media under ultrasound at room temperature. The remarkable advantages offered by this method are green catalyst, mild reaction conditions, simple procedures, much faster reactions and excellent yield of products.

Keywords: 2,4,5-Triaryl-1H-imidazole, Boric acid, Aqueous media, Ultrasound irradiation

REFERENCES
[5]. S.S. Nayak, N.A. Miregane, V.S. Shivankar, K.B. Pathade, G.C. Wadhawa, Mater. Today: Proc., 2021, 37, 2302-2305. [Crossref], [Google Scholar], [Publisher]
[7]. N.A. Miregane, A. Chandore, V. Shivankar, Y. Gaikwad, G.C. Wadhawa, Res. J. Pharm. Technol., 2021, 14, 2686-2690. [Crossref], [Google Scholar], [Publisher]


[16]. D. Kumar, D.N. Kommi, R. Chebolu, S.K. Garg, R. Kumar, A.K.Chakraborti, RSC Adv., 2013, 3, 91–98. [Crossref], [Google Scholar], [Publisher]


[18]. S.S. Nayak, N.A. Mirgane, V.S. Shivankar, K.B. Pathade, G.C. Wadhawa, Mater. Today: Proc., 2021, 37, 2427-2431. [Crossref], [Google Scholar], [Publisher]


[21]. D. Secci, A. Bolasco, M. D’Ascenziol, F. dellaSala, M. Yañez, S. Carradori, J. Heterocyclic Chem., 2012, 49, 1187. [Crossref], [Publisher]


[23]. S.S. Nayak, G.C. Wadhawa, K.B. Pathade, V.S. Shivankar, N.A. Mirgane, Plant Science Today, 2021, 8, 380-385. [Crossref], [Google Scholar], [Publisher]


[30]. R. Javaheşenas, J. Khalafy, R. Herman Prager, J. Chem. Rev., 2019, 1, 233-242. [Crossref], [Google Scholar], [Publisher]


[34]. C.H. Gill, G.C. Wadhawa, L. Gavali, V.S. Shivankar, K. Pawar, Res. J. Pharm. Pharm., 2018, 10, 103-104. [Crossref], [Google Scholar], [Publisher]


[37]. Z. Li, H. Huang, H. Sun, H. Jiang, H. Liu, J. Comb. Chem., 2008, 10, 484-486. [Crossref], [Google Scholar], [Publisher]

[38]. A. Saberi, Iran. J. Sci. Technol., 2015, 39, 7-10. [Crossref], [Google Scholar], [Publisher]
[40]. H. Naemi, Z. Bbae, Green Chem. Lett. Rev., 2017, 10, 129–133. [Crossref], [Google Scholar], [Publisher]
[43]. N. Boufatah, A. Gellis, J. Maldonado, P. Vanelle, Tetrahedron, 2004, 60, 9131-9137. [Crossref], [Google Scholar], [Publisher]
[45]. R. Martinez-Palou, L.G. Zepeda, H. Höpfl, A. Montoya, D.J. Guzman-Lucero, J. Guzman, Mol Divers., 2005, 9, 361-369. [Crossref], [Google Scholar], [Publisher]
[49]. O. Algul, A. Kaessler, Y. Apchin, A. Yilmaz, J. Jose, Molecules, 2008, 13, 736-748. [Crossref], [Google Scholar], [Publisher]
[51]. S. Asirvatham; E. Thakor; H. Jain, J. Chem. Rev., 2021, 3, 247-272. [Crossref], [Publisher]
[53]. M.A.H. Zahran, F.A.A. El-Essawy, S.M. Yassin, T.A.R. Salem, N.M. Boshta, Archive der Pharmz., 2007, 340, 591-598. [Crossref], [Google Scholar], [Publisher]
[57]. K. Niknam, A. Fatehi-Raviz, Iran. Chem. Soc., 2007, 4, 438-443. [Crossref], [Google Scholar], [Publisher]
[60]. Z.H. Zhang, L. Yin, Y.M. Wang, Catal. Commun., 2007, 8, 1126-1131. [Crossref], [Google Scholar], [Publisher]