

Spectra-Temporal Attention Networks (STAN): A Dual-Stream Approach for Robust Deepfake Detection in Face Recognition Systems

**Asst. Prof. Manisha Bharatram Bannagare¹, Mr. Vishal Ashok Ghuge², Mr. Rohit Vijay Shukla³,
Mr. Kaushik Rajvilas Moon⁴, Mr. Om Avinash Jadhav⁵, Mr. Sankalp Manohar Ganvir⁶,
Mr. Pratik Dnyaneshwar Shevane⁷, Ms. Sakshi Shankar Kewat⁸, Onkar Rajendra Dhanewar⁹**

Guide, Department of Computer Science & Engineering¹

Students, Final Year Department of Information Technology²⁻⁹

manisha180392@gmail.com

R.V. Parankar College of Engineering and Technology, Arvi, Maharashtra, India

ghugevishal25@gmail.com and rohitvijayshukla265@gmail.com

Abstract: The rapid proliferation of deep learning-based synthetic media, commonly known as "deepfakes," poses a critical threat to the integrity of biometric security systems, particularly face recognition protocols. While early generation deepfakes were easily detectable by the human eye, modern auto-encoder and diffusion-based models can generate hyper-realistic artifacts that challenge even sophisticated detection algorithms. Traditional Convolutional Neural Networks (CNNs) often fail to generalize against these threats because they over-rely on spatial pixel patterns, which are easily masked by video compression algorithms used on social media platforms. To address this limitation, this paper introduces the **Dual-Stream Spectral-Temporal Attention Network (DS-STAN)**. This novel architecture moves beyond simple pixel analysis by exploiting two fundamental weaknesses in synthetic media: the frequency-level "fingerprints" left by upsampling operations and the subtle physiological inconsistencies inherent in generated video over time. By fusing a Frequency-based stream with a Video Vision Transformer (ViT) stream, DS-STAN achieves state-of-the-art performance. Experimental results on benchmark datasets demonstrate that our model not only detects known attack types with high accuracy but also generalizes significantly better to unseen deepfake methods compared to single-modality detectors.

Keywords: Deepfake Detection, Biometric Security, Vision Transformers, Frequency Analysis, Face Anti-Spoofing, Generative Adversarial Networks