IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, November 2025

Advanced Anti-Theft System for Four-Wheelers Using Multi-Factor Authentication and IoT Technology

Sakshi Amrutkar, Nikhil Deore, Aditya Garmode, Prof. M. V. Marathe

Department of Information Technology K. K. Wagh Institute of Engineering Education & Research, Nashik, India sakshiamrutkar@gmail.com, adityagarmode5@gmail.com nickdeore0203@gmail.com, mvmarathe@kkwagh.edu.in.com

Abstract: This paper presents a comprehensive anti-theft sys- tem for four-wheel vehicles that implements dual-factor au- thentication using Radio Frequency Identification (RFID) and fingerprint biometric verification. The proposed system enhances vehicle security by integrating multiple layers of protection in-cluding physical access control, ignition immobilization, real-time GPS tracking, and remote IoT-based kill switch functionality. The system employs ATmega328P microcontroller and NodeMCU ESP8266 for processing and connectivity, RC522 RFID reader and AS608 fingerprint sensor for authentication, GPS module for location tracking, and relay-based ignition control. Experimental results demonstrate that the system effectively prevents unau-thorized vehicle operation with 98.7% authentication accuracy and provides reliable remote monitoring capabilities through the Blynk IoT platform. The system represents a significant advance- ment in vehicle security technology by combining physical and digital security measures in a cost-effective solution.

Keywords: Vehicle Security, RFID, Fingerprint Authentication, GPS Tracking, Internet of Things, Blynk Platform, Anti- Theft System, Multi-factor Authentication

DOI: 10.48175/568

