IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Regenerative Braking Control and Energy Recovery Optimization for Brushless DC Motor Electric Vehicles

Ankur Singh¹ and Ashish Bhargava²

M. Tech Scholar, Bhabha Engineering Research Institute, Bhopal, MP¹ Professor, Bhabha Engineering Research Institute, Bhopal, MP²

Abstract: Based on a Brushless DC (BLDC) motor, this research provides a novel regenerative braking approach. The recommended approach for braking involves using a variable Stator voltage from a multicell battery system DC-DC buck converter. To evaluate the performance of the proposed braking system, a simulation was used. According to simulation results, the proposed regenerative braking technique is practical and efficient. Additionally, this research introduces the most fundamental technology for regenerative braking using a BLDC motor to improve the mileage of lightweight electric vehicles (EVs).

Keywords: Solar PV, Electric Vehicle, Regenerative Braking, Zeta Converter, P&O - MPPT, Battery & PMBLDC.

