IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, September 2025

Impact Factor: 7.67

A Review Paper on: "Automated Waste Classification with Image Processing and Deep Learning for a Circular Economy"

Dr Pusparani M K¹, Bhramara Katagi², Nithya Jain G S³, Sudeep P M⁴, Varun S⁵
Associate Professor, Department of CSD¹
UG Scholars, Department of CSD²⁻⁵
Alvas Institute of Engineering and Technology, Mijar, Karnataka, India

Abstract: With the growing population and urbanization, solid waste generation is rapidly increasing, creating serious environmental and health concerns. Traditional manual waste segregation is slow, labor-intensive, and often inaccurate, leading to lower recycling rates and more pollution. To address this, we propose a Smart Waste Segregation System that uses image processing and Convolutional Neural Networks (CNNs) to automatically classify waste into recyclable, organic, and non-recyclable categories. This automated system improves accuracy, efficiency, and speed while reducing labor costs and human error. By integrating sensors and machine learning, the system enables real-time waste sorting at the source, promoting safer working conditions, better recycling, and a cleaner environment. Our results show high performance based on key evaluation metrics, supporting sustainable waste management and contributing to a circular economy.

Keywords: Image Processing, Machine Learning, Recycling, Sustainability

