IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, July 2025

Boost Converter-Based Maximum Power Point Tracking of Solar Panels Using the P&O Algorithm

Pankaj Moyal¹, Rajnish², Ravinder Singh³

M.Tech. Scholar, Department of EE¹
Assistant Professor, Department of EE^{2,3}
BRCM College of Engineering and Technology, Bahal (Bhiwani), India

Abstract: The study delves into the coordinated operation of wind and solar-based microgrids connected to the main grid, emphasizing intelligent power flow control to alleviate grid stress and elevate power quality. A simulated model of a smart grid with multiple renewable-integrated microgrids is developed, incorporating dynamic tariff mechanisms and efficient energy distribution for better performance. The results validate the potential of combining ANN-based forecasting with IoT-enabled smart monitoring for managing power in multiple microgrids. This setup also lays the groundwork for future participation in energy trading. The final hardware prototype, equipped with the AI-based $I\cos\phi$ control logic, successfully operates under nonlinear load conditions, demonstrating the practical applicability of the proposed system.

Keywords: renewable energy sources, artificial neural network, feed forward neural network, internet of things, energy trading

