

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 2, February 2022

Artificial Intelligence Application for COVID 19 Pandemic

Dr. Mamta Sharma

Assistant Professor, Department of Commerce Kishan Lal Public College, Rewari, India

Abstract: Since the last few months the world is experiencing an outbreak of COVID-19 pandemic that generally follows a similar path consisting of following phases: the first phase involving a very few people suffering from the infection and only a limited number of response, which is then followed by the next phase involving a take-off in the epidemic curve along with a national lockdown done in order to flatten the curve. Amidst all this, governments across the world are burdened by the question as to when and how to manage de-confinement.

Keywords: Artificial Intelligence

REFERENCES

[1] Bai, H. X., Hsieh, B., Xiong, Z., Halsey, K., Choi, J.W., Tran, T. M. L., ... and Jiang, X. L. (2020). Performance of radiologists in differentiating COVID-19 from viral pneumonia on chest CT. Radiology, 200823.

[2] Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., ... and Cao, K. (2020). Artificial intelligence distinguishes COVID-19from community acquired pneumonia on chest CT. Radiology, 200905.

[3] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEEConference on Computer Vision and Pattern Recognition (pp. 770-778).

[4] Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., ... and Li, Y. (2020). Deep learning system to screen coronavirus disease 2019pneumonia. arXiv preprint arXiv:2002.09334.

[5] Kanne, J. P. (2020). Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points forthe radiologist. Radiology, 200241.

[6] Chung, M., Bernheim, A., Mei, X., Zhang, N., Huang, M., Zeng, X., ... and Jacobi, A. (2020). CT imaging features of 2019novel coronavirus (2019-nCoV). Radiology, 200230.

[7] Ghoshal, B., and Tucker, A. (2020). Estimating uncertainty and interpretability in deep learning for coronavirus (COVID-19)detection. arXiv preprint arXiv:2003.10769.

[8] Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., ... and Xu, B. (2020). A deep learning algorithm using CT images toscreen for corona virus disease (COVID-19). medRxiv, doi:https://doi.org/10.1101/2020.02.14.20023028.

[9] Bai, X., Fang, C., Zhou, Y., Bai, S., Liu, Z., Chen, Q., ... and Song, D. (2020). Predicting COVID-19 malignant progressionwith AI techniques. medRxiv, doi: https://doi.org/10.1101/2020.03.20.20037325.

[10] Jin, C., Chen, W., Cao, Y., Xu, Z., Zhang, X., Deng, L., ... and Feng, J. (2020). Development and evaluation of an AI systemfor COVID-19. medRxiv, doi: <u>https://doi.org/10.1101/2020.03.20.20039834.</u>

[11] Jin, S., Wang, B., Xu, H., Luo, C., Wei, L., Zhao, W., ... and Sun, W. (2020). AI-assisted CT imaginganalysis for COVID-19 screening: Building and deploying a medical AI system in four weeks. medRxiv, doi: https://doi.org/10.1101/2020.03.19.20039354.

[12] Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., and Liang, J. (2018). Unet++: A nested u-net architecture for medical imagesegmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (pp.3-11). Springer, Cham.

[13] Narin, A., Kaya, C., and Pamuk, Z. (2020). Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks. arXiv preprint arXiv:2003.10849.

[14] Wang, L., andWong, A. (2020). COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19cases from chest radiography images. arXiv preprint arXiv:2003.09871.

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 2, February 2022

[15] Gozes, O., Frid-Adar, M., Greenspan, H., Browning, P. D., Zhang, H., Ji, W., ... and Siegel, E. (2020). Rapid AI developmentcycle for the coronavirus (COVID-19) pandemic: initial results for automated detection and patient monitoring using deeplearning CT image analysis. arXiv preprint arXiv:2003.05037.

[16] Chowdhury, M. E., Rahman, T., Khandakar, A., Mazhar, R., Kadir, M. A., Mahbub, Z. B., ... and Reaz, M. B. I. (2020). CanAI help in screening viral and COVID-19 pneumonia?. arXiv preprint arXiv:2003.13145.

[17] Maghdid, H. S., Asaad, A. T., Ghafoor, K. Z., Sadiq, A. S., and Khan, M. K. (2020). Diagnosing COVID-19 pneumonia fromX-ray and CT images using deep learning and transfer learning algorithms. arXiv preprint arXiv:2004.00038.