IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Jy 9001:2015 9001:2015 Impact Factor: 7.67

Volume 5, Issue 5, May 2025

Satellite-based Flood Detection

Dr. Nilesh N. Thorat¹, Dr. Sumit Arun Hirve², Sylvan Furtado³, Sahil Kshirsagar⁴, Kush Sugandhi⁵, Aditya Singh⁶

Assistant Professor, MIT Art Design and Technology University, Pune, India¹ Associate Professor, MIT Art Design and Technology University, Pune, India² Students, MIT Art Design and Technology University, Pune, India³⁻⁶

Abstract: Flooding poses a significant threat globally, leading to immense economic losses and human displacement. Accurate and timely detection of flood-affected areas is critical for disaster management and response planning. This paper introduces FloodSee, an automated system for flood detection using satellite imagery. The system leverages data from the Sentinel-1 and Sentinel-2 satellites and employs a fine-tuned ResNet-50 deep learning architecture for classification. By combining radar and optical imagery, FloodSee overcomes challenges such as cloud cover and provides robust detection capabilities. Experimental results demonstrate the model's high accuracy, highlighting its potential for operational deployment in flood monitoring and mitigation systems.

Keywords: Flood detection, ResNet-50, Sentinel-1, Sentinel-2, disaster management, satellite imagery, remote sensing

