IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, April 2025

Advancing Resume Screening with Transformer- Based Deep Learning and Graph Neural Networks

Narmatha Jaya Sri M¹ and Dr. M. Praneesh²

UG Student, Department of Computer Science With Data Analytics¹
Assistant Professor, Department of Computer Science with Data Analytics²
Sri Ramakrishna College of Arts & Science, Coimbatore, Tamil Nadu, India

Abstract: Traditional resume screening systems, reliant on keyword matching (e.g., Jaccard/Cosine similarity), struggle with semantic understanding, multilingual content, and contextual evaluation, leading to biased and inefficient hiring processes. This paper introduces an AI-driven resume analysis system that integrates Transformer-based deep learning (BERT) and Graph Neural Networks (GNNs) to address these limitations. Leveraging multilingual BERT embeddings, the system interprets semantic context and synonyms (e.g., "machine learning" \approx "ML"), enabling accurate analysis of resumes in 10+ languages, including Spanish, French, and Chinese. The GNN component models structural relationships between resume sections (e.g., correlating "Education" with "Technical Skills") to holistically evaluate candidates beyond isolated keywords. A hybrid approach combining sentiment analysis and keyword detection identifies soft skills like leadership and teamwork, while Explainable AI (XAI) tools (LIME/SHAP) provide transparency by highlighting phrases influencing decisions (e.g., "optimized AWS costs by 30%" increased the cloud engineering score).

Tested on 500+ resumes and 200+ job descriptions, the system achieved 89% accuracy in resume-job matching, outperforming Jaccard similarity by 39% and BERT-only approaches by 14%. It processes resumes in 8.2 seconds on average using AWS GPU instances and reduces recruiter screening time by 40%. Key innovations include multilingual fairness (88% F1-score for non-English resumes) and bias mitigation through semantic analysis. The system's scalability and transparency.

Keywords: Transformer Models, Graph Neural Networks, Multilingual NLP, Explainable AI, Semantic Resume Analysis

