IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 12, Issue 4, December 2021

Functional Nanomaterials in Catalysis and Sensing Applications

Vinita¹ and Preeti Gupta²

Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, UP, India^{1,2} vinitavermabhu@gamil.com¹

Abstract: The role of nanomaterials is very important due to the fact that they possess large surface area to volume ratio, ease of functionalization, fast electron transfer kinetics, catalytic activity and biocompatibility and also selectivity and specificity. With the advent of nanotechnology, its application incatalysis and sensing is entering to a new era for the design of innovative sensors that can sense low level concentration of analyte by portable sensor device which was hardly possible earlier. Sensors have fascinated much consideration in the recent time because of potential applications of these devices in the clinical diagnosis, pharmaceuticals, environmental monitoring and food processing industries etc. The main focus of present paper is the investigations of metal nanomaterials such as silver, gold, platinum, palladium and carbon-based nanomaterials to develop efficient catalyst and sensors for early and accurate detection of biomolecules, drugs and pollutants. These materials showed enormous potential to use as active material for catalysis and sensing applications.

Keywords: Role of Nanomaterials

REFERENCES

- [1]. Buzea, C. Pacheco, I. I. and Robbie, K. "Nanomaterials and nanoparticles: sources and toxicity," Biointerphases, 2 (4) (2007) MR17–71.
- [2]. Feng J., Gao C. and Yin Y. "Stabilization of noble metal nanostructures for catalysis and sensing", Nanoscale, 10, (2018) 20492.
- [3]. Vinita, Nirala, N.R. and Prakash, R. "One step synthesis of AuNPs@ MoS2-QDs composite as a robust peroxidase-mimetic for instant unaided eye detection of glucose in serum, saliva and tear," Sensor. Actuator. B Chem, 263 (2018) 109-119.
- [4]. Nirala, N.R. Khandelwal, G. Kumar, B. Vinita, Prakash, R. and Kumar, V. "One step electro-oxidative preparation of graphene quantum dots from wood charcoal as a peroxidase mimetic," Talanta, 173 (2017) 36–43
- [5]. Vinita, Nirala, N.R. and Prakash, R., "Facile and selective colorimetric assay of choline based on AuNPs-WS2QDs as a peroxidase mimic", Microchemical Journal 167 (2021) 106312.
- [6]. Daniel, I. M. Ishai, O. Daniel, I. M. and Daniel, I. "Engineering mechanics of composite materials," Oxford university press New York, (3), (1994)
- [7]. Jones, R. M. "Mechanics of composite materials," CRC Press (1998).
- [8]. Stankovich, S. Dikin, D.A. Dommett, G.H.B. Kohlhaas, K.M. Zimney, E.J. Stach, E.A. and Ruoff, R.S. "Graphene-based composite materials," Nature, 442(7100) (2006) 282–286.
- [9]. Cao, H. Wang, H. Huang, Y. Sun, Y. Shi, S. and Tang, M. "Quantification of gold(III) in solution and with a test stripe via the quenching of the fluorescence of molybdenum disulfide quantum dots," Microchim Acta, 184 (2017) 91–100.
- [10]. 10. Fan, X. White, I. M. Shopova, S. I. Zhu, H. Suter, J. D. and Sun, Y. "Sensitive optical biosensors for unlabeled targets: a review," Analytica Chimica Acta, 620 (1-2),(2008) 8–26.
- [11]. Huang, Y.F. Wang, Y.F. and Yan, X.P. "Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens," Environmental Science and Technology, 44 (20), (2010) 7908–7913.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-2452

508

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 12, Issue 4, December 2021

- [12]. Wei, H. and Wang, E. "Fe₃O₄ magnetic nanoparticles as peroxidase mimetics and their applications in H₂O₂ and glucose detection," Analytical Chemistry, **80** (6), (2008) 2250–2254.
- [13]. Gao, L. Zhuang, J. Nie, L. Zhang, J. Zhang, Y. Gu, N. and Yan, X. "Intrinsic peroxidase-like activity of ferromagnetic nanoparticles," Nature Nanotechnology, 2 (9), (2007) 577–583.
- [14]. Long, Y.J. Li, Y.F. Liu, Y. Zheng, J.J. Tang, J. and Huang, C.Z. "Visual observation of the mercury-stimulated peroxidase mimetic activity of gold nanoparticles," Chemical Communications (Cambridge, England), 47(43) (2011) 11939–11941.
- [15]. Asati, A. Santra, S. Kaittanis, C. Nath, S. Perez, J.M. "Oxidase-like activity of polymer-coated cerium oxide nanoparticles," Angew Chem Int Ed, 48 (2009) 2308–2312.
- [16]. Su, L. Feng, J. Zhou, X. Ren, C. Li, H. and Chen, X. "Colorimetric Detection of Urine Glucose Based ZnFe₂O₄ Magnetic Nanoparticles," Anal Chem, 84 (2012) 5753–5758.
- [17]. 17.Shi, W. Wang, Q. Long, Y. Cheng, Z. Chen, S. Zheng, H. and Huang, Y. "Carbon nanodots as peroxidase mimetics and their applications to glucose detection," Chemical Communications (Cambridge, England),47 (23) (2011) 6695–6702.
- [18]. Song, Y. Wang, X. Zhao, C. Qu, K. Ren, J. and Qu, X. "Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity." Chemistry (Weinheim an Der Bergstrasse, Germany),16 (12) (2010) 3617–21.
- [19]. André, R. Natálio, F. Humanes, M. Leppin, J. Heinze, K. Wever, R. Schröder, HC. Müller, WEG. Tremel, W. "V₂O₅ nanowires with an intrinsic peroxidase-like activity," Adv Funct Mater, 21 (2011) 501–509.
- [20]. 20. Song, Y. Qu, K. Zhao, C. Ren, J. and Qu, X. "Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection," Advanced Materials, 22 (19) (2010) 2206–2210.
- [21]. Ivanova, M.N. Grayfer, E.D. Plotnikova, E.E. Kibis, L.S. Darabdhara, G. Boruah, P.K. Das, M.R. and Fedorov, V.E. "Pt-Decorated Boron Nitride Nanosheets as Artificial Nanozyme for Detection of Dopamine." ACS Appl. Mater. Interfaces (2019).
- [22]. Raj, C.R. Okajima, T. Oshaka, T. "Gold nanoparticle arrays for the voltammetric sensing of dopamine," J.Electroanal. Chem., 543(2003) 127-133.
- [23]. Chen, X. Cai, Z. Huang, Z. Oyama, M. Jiang, Y. Chen, X. "Ultrafine palladium nanoparticles grown on graphene nanosheets for enhanced electrochemical sensing of hydrogen peroxide," Electrochimica Acta, 97 (2013) 398–403.
- [24]. Atta, N.F. Galal, A. Azab, S.M. "Electrochemical Morphine Sensing Using Gold Nanoparticles Modified Carbon Paste Electrode," Int. J. Electrochem. Sci., 6 (2011) 5066 5081.
- [25]. Li, Z. Chen, Y. Xin Y and ZhangZ. "Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam," Scientific Reports, 5 (2015)16115.
- [26]. Lan, L. Yao, Y. Ping, J. Ying, Y. "Ultrathin transition-metal dichalcogenide nanosheet-based colorimetric sensor for sensitive and label-free detection of DNA," Sensors and Actuators B: Chemical, 290 (2019) 565-572
- [27]. Vinita, Tiwari, M. Prakash,R., "Colorimetric detection of picric acid using silver nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole", Applied Surface Science (2015)174-180.

DOI: 10.48175/IJARSCT-2452