

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 7, March 2025

Fast Charging Station for Electrical Vehicles Based on DC Microgrid by using Fuzzy Logic Controller

Dr. N. Ramesh Raju¹, R. Vijay Bhaskar², K Thulaseeswar³, S. Vidya Sagar⁴, S. Sudheer Varma⁵, T. Yuva Teja⁶ Professor & HOD, EEE Department¹

UG Students, Department of EEE²⁻⁶ Siddharth Institute of Engineering & Technology, Puttur, India

sietk.f6.eee@gmail.com¹, vijayreddyravuri@gmail.com², konapallithulasieswar@gmail.com³, vidyasagar2004s@gmail.com⁴, varmasudheer33@gmail.com⁵, yuvathumburu@gmail.com⁶

Abstract: The rapid adoption of electric vehicles (EVs) has heightened the need for fast charging stations that can meet high-power demands efficiently. Conventional charging methods struggle with long durations and grid instability, especially when charging multiple vehicles simultaneously. This paper presents a fast charging station powered by a DC microgrid integrated with renewable energy sources, particularly solar photovoltaics (PVs), to mitigate the impact on the power grid. A fuzzy logic controller (FLC) is employed to regulate charging process, optimizing energy flow based on battery state-of-charge (SOC) levels. By utilizing a multistep constant current charging algorithm, the proposed system ensures faster charging while maintaining battery health. Simulation results demonstrate significant reductions in grid voltage dips and transformer overheating. A software validates the proposed methodology, highlighting the system's potential for sustainable EV charging infrastructure

Keywords: solar, boost converter, Electric vehicle, charging station, Inverter, Fuzzy logic controller

