

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 12, Issue 4, December 2021

Studies in Solute-Solute and Solute-Solvent Interaction of Some Substituted Ketimine Drugs in 75 % Dichloromethane Water Mixture under Different Temperature by Viscometric Technique

Ganesh Andhale¹, Satyanarayan Arde², Sanghapal Padhen³ and Prabhakar Kute⁴ Assistant Professor, Department of Chemistry^{1,2,3,4} Shri Shivaji Art's, Commerce & Science College, Akot, Akola, Maharashtra, India¹ Y. C. Warana Mahavidyalaya, Warananagar, Maharashtra, India² Rajarshi Shahu Science College, Chandur (Rly), Maharashtra, India³ Pratishthan Mahavidylaya, Paithan, Maharashtra, India⁴ ganeshandhale005@gmail.com and kuteprabhakar@gmail.com

Abstract: The computation of densities, specific viscosities of 5- Bromo-2-hydroxy-4-chloro (p-methyl phenyl) ketimine (L1) and 5- Bromo-2-hydroxy-4-chloro (p-amino phenol) ketimine (L2) drugs in 75% (DCM + water) mixture at the temperature range (308 to 314 K) are reported. The investigational data shows, the effect of temperature on viscosity of solute in DCM + water mixtures which gives idea about the molecular interactions present in different solutions. Considerable molecular interactions have been observed between the substituted ketimines drugs and DCM + water mixture. The experimental data at different temperature range (308 to 314 K) are used to investigate thermodynamic properties such as free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) of substituted ketimines drugs in 75% (DCM + water) mixture. The experimental data gives the idea about effect of temperature on the molecular interaction and structural changes in solute.

Keywords: Ketimine, dichloromethane (DCM), molecular interaction, free energy change etc.

REFERENCES

- [1]. H. A. Zarei & F Jalili.. "Densities and derived thermodynamic properties of (2- methoxyethanol+ 1-propanol, or 2-propanol, or 1, 2-propandiol) at temperatures from T= (293.15 to 343.15) K". The Journal of Chemical Thermodynamics, 39(1), 2007, pp. 55-66.
- [2]. M. P. Wadekar. "Thermo acoustical molecular interaction study of azomethine and its Fe (III) metal complex using ultrasonic technique". J. Chem. Pharm. Res, 5(8), 2013, pp. 37-41.
- [3]. V. K. Syal, S. K Thakur, S Chauhan & P Sharma. "Ultrasonic velocity studies of drug parvon-spas in mixed alcohol-water solvent systems at 25 C". Int. J. of Thermophysics, 26(3), 2005, pp. 807-826.
- [4]. A. Korolkovas. "Essentials of medicinal chemistry". New York: Wiley Ch. 3. 1988.
- [5]. J. B. Stenlake. "Foundations of Molecular Pharmacology" London: Athlone Press, 1975.
- [6]. M. Rowland & T. N. Tozer. Clinical Pharmacokinetics: Concepts and Applications Philadelphia: Lea and Febiger, 1989, pp. 459.
- [7]. M. Gibaldi. Biopharmaceuits and Clinical Pharmokinetics, Malvern, Pennsylvania: Lea and Febiger, 1991.
- **[8].** M. J Iqbal & M. Siddiquah, "Partial molar volume of mefenamic acid in alcohol at temperatures between T= 293.15 and T= 313.15 K". Journal of the Brazilian Chemical Society, 17, 2006, pp. 851-858.

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 12, Issue 4, December 2021

- [9]. V. R. Shaikh, V. R. Salunke, K. P. Behare, S. E. Patil, A. U. Borse & K. J. Patil. "Volumetric properties of local anesthetical drug lidocaine hydrochloride in aqueous and in aqueous NaCl solutions at different temperatures". Journal of Chemical & Engineering Data, 63(5), 2018, pp. 1498-1506.
- [10]. K. K. Upadhyay, A. Kumar, S. Upadhyay & P. C. Mishra. "Synthesis, characterization, structural optimization using density functional theory and superoxide ion scavenging activity of some Schiff bases". Journal of Molecular Structure, 873(1-3), 2008, pp. 5-16.
- [11]. D. N. Dhar. & C. L Taploo. "Sciff's bases and their applications". J. Sci. Ind. Res., 41 (8), 1982, pp. 501-506.
- [12]. P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski & F. Bartl, "Biological Properties of Schiff Bases and Azo Derivatives of Phenols". Current Organic Chemistry, 13(2), 2009, pp. 124-148.
- [13]. G. Jones & M. Dole. "The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride". Journal of the American Chemical Society, 51(10), 1929, pp. 2950-2964.