

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 4, November 2024

Exploring the Role of Mitochondrial Dysfunction in Alzheimer's Disease Progression

Khushi Vasanata Moon¹, Khushi Rajendra Patil², Sanjana Rajkumar Dupare³, Khushi Sanjay Kucheriya⁴, Radha Rajkumar Gaykwad⁵, Kunal Sonal Chaudhari⁶ Students ,Final Year, Satyajeet Collage of Pharmacy, Mehkar, India^{1,2,3,4,5}

Student, Final Year, Shivai Chartable Trust's Collage of Pharmacy, Koregaonwadi, Omerga, Osmanabad⁶ Khushimoon8@gmail.com

Abstract: Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline and memory loss, significantly impacting patients' lives and presenting a major public health challenge. Mitochondrial dysfunction has emerged as a critical factor in AD pathogenesis, playing a pivotal role in oxidative stress, energy deficiency, and cellular degeneration. This paper explores the mechanisms by which mitochondrial dysfunction contributes to AD progression, focusing on oxidative stress, amyloid-beta ($A\beta$) interactions, mitochondrial DNA mutations, and disruptions in mitochondrial dynamics. By examining recent research, this study sheds light on the connection between mitochondrial health and neurodegeneration, linking mitochondrial impairment with synaptic dysfunction, neuroinflammation, and cell death in AD.

In addition to outlining pathological mechanisms, this paper reviews potential therapeutic strategies targeting mitochondrial pathways, including antioxidant therapies, mitochondria-targeted drugs, and gene therapy approaches. Emerging interventions, such as mitochondrial biogenesis enhancement and lifestyle modifications, are also discussed for their neuroprotective potential. This review concludes that targeting mitochondrial dysfunction holds promise for slowing or reversing AD progression, underscoring the need for continued research into mitochondrial-based treatments and biomarkers for early intervention.

Keywords: Alzheimer's Disease

DOI: 10.48175/568

562