

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 4, Issue 1, June 2024

Reinforcement Learning for Adaptive Cognitive Sensor Networks

Nazeer Shaik¹ and Abdul Subhahan Shaik²

Department of CSE^{1,2} Srinivasa Ramanujan Institute of Technology (Autonomous), Anantapur, India¹ Avanthi Institute of Engineering & Technology, Hyderabad, India²

Abstract: In this paper, we propose an adaptive cognitive sensor network (CSN) system utilizing reinforcement learning (RL) to optimize network performance dynamically. The RL-based system adjusts key parameters such as transmission power, channel selection, and data scheduling based on real-time environmental feedback, thereby enhancing energy efficiency, spectrum utilization, and data accuracy. A Q-learning algorithm is employed to train the RL agent, which operates under an ϵ -greedy policy to balance exploration and exploitation. Comparative analysis with traditional static and rule-based systems demonstrates significant improvements across all key performance metrics. Future enhancements are suggested, including advanced RL techniques, transfer learning, and real-world deployments, highlighting the potential of RL in transforming CSNs into more intelligent, efficient, and resilient networks

Keywords: Reinforcement Learning, Cognitive Sensor Networks, Q-learning, ϵ \epsilon ϵ -greedy policy, Energy Efficiency, Spectrum Utilization, Data Accuracy, Adaptive Networks, Dynamic Optimization, Machine Learning

