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Abstract: Notably, IoT device utilization has experienced a substantial wave recently, and ensuring these 

devices' privacy and security has become a critical concern. ML-based security approaches are promising 

for IoT network protection against security concerns. This study provides a proximate analysis of tree-

based and deep-learning algorithms for securing IoT domains. Specifically, we evaluate Decision Tree, 

RandomForest, XGBoost, Catboost, Extreme Tree, Light GMB, Adaptive Boosting, CNN, LSTM, MLP, 

GRU, and Autoencoder on four publicly available datasets - IoT23, CICID2017, EdgeIIoT, BotnetIoT and 

Contiki OS and Cooja simulation were used to generate a dataset featuring various RPL attacks. To assess 

the performance of a model, we measure its accuracy, precision, recall, and F1-score metrics. Our 

discoveries indicate that tree-based algorithms outperform deep learning algorithms regarding training 

time, memory usage, and interpretability while gaining comparable or even better detection accurateness. 

Conversely, deep-learning algorithms exhibit higher detection rates for rare or previously unseen attacks; 

their proficiency in detecting complex patterns and relationships within a given dataset has demonstrated 

remarkable efficacy in data analysis and classification tasks. We conclude that both tree-based and deep 

learning algorithms have their strengths and weaknesses, and in the IoT environment, one should base the 

choice of the algorithm on requirements and constraints. Our research shows hybrid approaches combining 

algorithm strengths can establish secure, distributed IoT systems. 
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