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Abstract: Solving high-dimensional partial differential equations (PDEs) poses a significant challenge due 

to the computational complexity and memory requirements involved. Traditional numerical methods 

encounter limitations when dealing with large-scale problems, motivating the exploration of alternative 

techniques. Deep learning has emerged as a promising approach to address these challenges by leveraging 

the representational power of neural networks. In the context of solving high-dimensional PDEs, deep 

learning techniques offer several advantages, including scalability, flexibility, and the ability to learn 

complex mappings between input and output spaces. By utilizing architectures such as convolutional neural 

networks (CNNs) and recurrent neural networks (RNNs), researchers have developed innovative methods to 

approximate solutions to high-dimensional PDEs. These approaches often involve training neural networks 

on simulated or experimental data to learn the underlying dynamics of the system, enabling efficient and 

accurate predictions. Additionally, techniques such as physics-informed neural networks (PINNs) integrate 

domain knowledge into the learning process, enhancing the robustness and interpretability of the models. 

Despite the progress achieved, challenges remain in optimizing network architectures, handling large 

datasets, and ensuring generalization to diverse problem domains. Nevertheless, the intersection of deep 

learning and high-dimensional PDEs holds great promise for advancing computational science and 

engineering applications, paving the way for more efficient and scalable solutions to complex physical 

phenomena 
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