IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 $International\ Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary\ Online\ Journal\ Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary\ Online\ Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary\ Open-Access, Multidisciplinary\ Open-A$

Volume 4, Issue 2, January 2024

Biometric Child Vaccination System

Mrs. Prajakta Mahajan, Gaurav Pawar, Ruturaj Misal, Pratik Gitte, Chaitanya Kalel

Department of Computer Engineering Pimpri Chinchwad Polytechnic, Pune, Maharashtra, India

Abstract: With a number of emerging applications requiring biometric recognition of children (e.g., tracking child vaccination schedules, identifying missing children and preventing newborn baby swaps in hospitals), investigating the temporal stability of biometric recognition accuracy for children is important. The persistence of recognition accuracy of three of the most commonly used biometric traits (fingerprints, face and iris) has been investigated for adults. However, persistence of biometric recognition accuracy has not been studied systematically for children in the age group of 0-4 years. Given that very young children are often uncooperative and do not comprehend or follow instructions, in our opinion, among all biometric modalities, fingerprints are the most viable for recognizing children. This is primarily because it is easier to capture fingerprints of young children compared to other biometric traits, e.g., iris, where a child needs to stare directly towards the camera to initiate iris capture. In this report, we detail our initiative to investigate the persistence of fingerprint recognition for children in the age group of 0-4 years. Based on preliminary results obtained for the data collected in the first phase of our study, use of fingerprints for recognition of 0-4 year-old children appears promising.

Keywords: Child Vaccination

REFERENCES

- [1] J Thomas MR, Lip GY. Novel risk markers and risk assessments for cardiovascular disease. Circulation research. 2017; 120(1):133–149. https://doi.org/10.1161/CIRCRESAHA.116.309955 PMID: 28057790
- [2] Ahmed M. AlaaID1, Thomas Bolton, Emanuele Di Angelantonio, James H.F. RuddID, Mihaela van der Schaar,—Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants||, PLOS ONE 14(5): e0213653. https://doi.org/10.1371/journal, May 15, 2019H. Poor, —A Hypertext History of Multiuser Dimensions, MUD History, http://www.ccs.neu.edu/home/pb/mudhistory.html. 1986. (URL link *include year)
- [3] Stephen F. Weng, Jenna Reps, Joe Kai1, Jonathan M. Garibaldi, Nadeem Qureshi, —Can machine-learning improve cardiovascular risk prediction using routine clinical data? , PLOS ONE | https://doi.org/10.1371/journal.pone. 0174944 April 4, 2017
- [4] Rine Nakanishi, Damini Dey, Frederic Commandeur, Piotr Slomka, —Machine Learning in Predicting Coronary Heart Disease and Cardiovascular Disease Events: Results from The Multi-Ethnic Study of Atherosclerosis (Mesa)l, JACC Mar-20, 2018, Volume 71, Issue 11
- [5] https://www.cdc.gov/heartdisease/facts.htm. Available [Online].
- [6] Senthilkumar Mohan, Chandrasegar Thirumalai, Gautam Srivastava —Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques^{||}, Digital Object Identifier 10.1109/ACCESS.2019.2923707, IEEE Access, VOLUME 7, 2019 S.P. Bingulac, —On the Compatibility of Adaptive Controllers, Proc. Fourth Ann. Allerton Conf. Circuits and Systems Theory, pp. 8-16, 1994. (Conference proceedings)

DOI: 10.48175/IJARSCT-15240

