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Abstract: This abstract explores the application of deep learning techniques for solving high-dimensional 

partial differential equations (PDEs). High-dimensional PDEs pose significant challenges in traditional 

numerical methods due to the curse of dimensionality, making them computationally expensive and often 

infeasible. Deep learning, specifically neural networks, has shown promise in efficiently approximating 

complex functions and handling high-dimensional data. This paper reviews various deep learning 

approaches, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs), applied 

to the numerical solution of high-dimensional PDEs. The study discusses the advantages and limitations of 

these techniques, highlighting their potential to enhance accuracy and computational efficiency in 

comparison to classical methods. Additionally, it addresses the incorporation of domain knowledge and the 

exploration of hybrid methodologies to further improve the robustness and generalization of deep learning 

models in tackling challenging high-dimensional PDE problems. 
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