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Abstract: With the proliferation of Internet of Things devices and the growing demand for edge computing 

capabilities, there is an urgent need to develop energy-efficient algorithms tailored for edge computing 

environments. This paper explores the integration of machine learning techniques to optimize algorithms 

for energy efficiency in edge computing settings. We discuss the challenges associated with traditional 

algorithms in edge environments and propose a framework leveraging machine learning-driven 

optimizations. Through case studies and experiments, we demonstrate the effectiveness of this approach in 

reducing energy consumption while maintaining performance in edge computing applications. 
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