IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 3, Issue 1, December 2023

Object Detection

Ridam Lokhande¹, Yash Nakhale², Neha Petkar³, Tanzila Sheikh⁴, Dr. Nitin Janwe⁵, Prof. R .V. Lichode⁶

Students, Department of Computer Science and Engineering^{1,2,3,4} HoD, Department of Computer Science and Engineering⁵ Guide, Department of Computer Science and Engineering⁶ Rajiv Gandhi College of Engineering Research and Technology, Chandrapur, Maharashtra, India

Abstract: Computer Vision is the branch of the science of computers and software systems which can recognize as well as understand images and scenes. Computer Vision is consists of various aspects such as image recognition, object detection, image generation, image super-resolution and many more. Object detection is widely used for face detection, vehicle detection, pedestrian counting, web images, security systems and self-driving cars. In this project, we are using highly accurate object detection-algorithms and methods such as R-CNN, Fast-RCNN, Faster-RCNN, RetinaNet and fast yet highly accurate ones like SSD and YOLO. Using these methods and algorithms, based on deep learning which is also based on machine learning require lots of mathematical and deep learning frameworks understanding by using dependencies such as TensorFlow, OpenCV, imageai etc, we can detect each and every object in image by the area object in an highlighted rectangular boxes and identify each and every object and assign its tag to the object. This also includes the accuracy of each method for identifying objects.

Keywords: Object Detection, Computer Vision, Deep Learning, Convolutional Neural Networks, Realtime Processing, Evaluation Metrics, Transfer Learning

REFERENCES

- [1]. Agarwal, S., Awan, A., and Roth, D. (2004). Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. Mach. Intell. 26,1475–1490. doi:10.1109/TPAMI.2004.108
- [2]. Alexe, B., Deselaers, T., and Ferrari, V. (2010). "What is an object?," in ComputerVision and Pattern Recognition (CVPR), 2010 IEEE Conference on (San Francisco, CA: IEEE), 73–80. doi:10.1109/CVPR.2010.5540226
- [3]. Aloimonos, J., Weiss, I., and Bandyopadhyay, A. (1988). Active vision. Int. J.Comput. Vis. 1, 333–356. doi:10.1007/BF00133571
- [4]. Andreopoulos, A., and Tsotsos, J. K. (2013). 50 years of object recognition: direc-tions forward. Comput. Vis. Image Underst. 117, 827–891. doi:10.1016/j.cviu.2013.04.005
- [5]. Azizpour, H., and Laptev, I. (2012). "Object detection using strongly-superviseddeformable part models," in Computer Vision-ECCV 2012 (Florence: Springer),836–849.
- [6]. Azzopardi, G., and Petkov, N. (2013). Trainable cosfire filters for keypoint detectionand pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35, 490–503.doi:10.1109/TPAMI.2012.106
- [7]. Azzopardi, G., and Petkov, N. (2014). Ventral-stream-like shape representation: from pixel intensity values to trainable object-selective cosfire models. Front.Comput. Neurosci. 8:80.

