Advancements in Smart Thermostat Technology for Enhanced HVAC Energy Management

Ireneo C. Plando, Jr.
Faculty, College of Technology,
Surigaodel Norte State University, Surigao City, Philippines

Abstract: This study examines the transformative potential of smart thermostat technology in revolutionizing Heating, Ventilation, and Air Conditioning (HVAC) energy management. Through a combination of literature review and empirical analysis, the research explores the significance of energy-efficient HVAC systems in reducing carbon footprint and energy costs. Traditional thermostat limitations, including inflexible scheduling and lack of user engagement, underscore the need for innovative solutions. The evolution of smart thermostat technology is traced from basic programmable thermostats to advanced systems integrated with learning algorithms, occupancy sensing, and the Internet of Things (IoT). Empirical data from surveys, case studies, and energy consumption analysis showcase the tangible impact of smart thermostat adoption. Energy savings of up to 30% in commercial settings and 25% in residential contexts underscore the technology's potential for efficiency. User satisfaction surveys reveal improved comfort levels and satisfaction with remote control capabilities. Challenges such as installation complexities and data security concerns highlight areas for improvement. Data analytics and machine learning emerge as pivotal in enhancing smart thermostat efficiency, contributing to additional energy savings. Comparisons between smart thermostat models underscore the importance of occupancy sensing and remote control features in optimizing energy efficiency and user satisfaction. The study's findings suggest a promising avenue for transforming HVAC energy management towards a more sustainable and user-centric approach.

Keywords: Smart Thermostat Technology, Enhanced HVAC Energy Management, Advancements

REFERENCES


